Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films
Hybrid organic/inorganic perovskite solar cells (PSCs) have shown great potential in meeting the future challenges in energy and environment. Solvent‐vapor‐assisted posttreatment strategies are developed to improve the perovskite film quality for achieving higher efficiency. However, the intrinsic w...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2017-03, Vol.27 (12), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | np |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Xiao, Shuang Bai, Yang Meng, Xiangyue Zhang, Teng Chen, Haining Zheng, Xiaoli Hu, Chen Qu, Yongquan Yang, Shihe |
description | Hybrid organic/inorganic perovskite solar cells (PSCs) have shown great potential in meeting the future challenges in energy and environment. Solvent‐vapor‐assisted posttreatment strategies are developed to improve the perovskite film quality for achieving higher efficiency. However, the intrinsic working mechanisms of these strategies have not been well understood yet. This study identifies an MA2Pb3I8(DMSO)2 intermediate phase formed during the annealing process of methylammonium lead triiodide in dimethyl sulfoxide (DMSO) atmosphere and located the reaction sites at perovskite grain boundaries by observing and rationalizing the growth of nanorods of the intermediate. This enables us to propose and validate an intermediate‐assisted grain‐coarsening model, which highlights the activation energy reduction for grain boundary migration. Leveraging this mechanism, this study uses MABr/DMSO mixed vapor to further enhance grain boundary migration kinetics and successfully obtain even larger grains, leading to an impressive improvement in power conversion efficiency (17.64%) relative to the pristine PSCs (15.13%). The revelation of grain boundary migration‐assisted grain growth provides a guide for the future development of polycrystalline perovskite thin‐film solar cells.
MA2Pb3I8(DMSO)2 intermediate is identified and tracked during the methylammonium lead triiodide thin‐film anneal process under dimethyl sulfoxide (DMSO) solvent vapor, which helps to reduce the activation energy of perovskite grain boundary migration. Leveraging this mechanism, an MABr/DMSO mix vapor anneal method is developed to further facillitate grain goundary migration to achieve 17.64% efficiency in NiO‐based inverted perovskite solar cell. |
doi_str_mv | 10.1002/adfm.201604944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893911745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893911745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4164-5b00feecc02321bd69ec9e8da5383fde233d614722ffd5f31c38f39a2f75928b3</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhleolaC0154tceklwWN7P3xECSkRQUSiVL1Zzu44Mnjt1N6kyrH_vIZUIHHhNKOZ5xmN9BbFV6BjoJSd6870Y0ahokIKcVScQAXViFPWfHjp4ddx8SmlB0qhrrk4Kf7e-x1aZ_2aaHKNezL3A8YeO6sHJNaTu-B26AfyU29CJMuQBu096mdjCOTSOx3XSCZxnzcuj5FMQ6-tTyQYchvX2oce84pcZalDssQYdunR5vMz6_r0ufhotEv45X89Le5nlz8mV6PF7ff55GIxagVUYlSuKDWIbUsZZ7DqKomtxKbTJW-46ZBx3lUgasaM6UrDoeWN4VIzU5eSNSt-Wnw73N3E8HuLaVC9TS06pz2GbVLQSC4BalFm9OwN-hC20efvFEhGBQCIJlPjA9XGkFJEozbR9jruFVD1lIh6SkS9JJIFeRD-WIf7d2h1MZ3dvLr_AEj9kR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920411148</pqid></control><display><type>article</type><title>Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films</title><source>Wiley Online Library All Journals</source><creator>Xiao, Shuang ; Bai, Yang ; Meng, Xiangyue ; Zhang, Teng ; Chen, Haining ; Zheng, Xiaoli ; Hu, Chen ; Qu, Yongquan ; Yang, Shihe</creator><creatorcontrib>Xiao, Shuang ; Bai, Yang ; Meng, Xiangyue ; Zhang, Teng ; Chen, Haining ; Zheng, Xiaoli ; Hu, Chen ; Qu, Yongquan ; Yang, Shihe</creatorcontrib><description>Hybrid organic/inorganic perovskite solar cells (PSCs) have shown great potential in meeting the future challenges in energy and environment. Solvent‐vapor‐assisted posttreatment strategies are developed to improve the perovskite film quality for achieving higher efficiency. However, the intrinsic working mechanisms of these strategies have not been well understood yet. This study identifies an MA2Pb3I8(DMSO)2 intermediate phase formed during the annealing process of methylammonium lead triiodide in dimethyl sulfoxide (DMSO) atmosphere and located the reaction sites at perovskite grain boundaries by observing and rationalizing the growth of nanorods of the intermediate. This enables us to propose and validate an intermediate‐assisted grain‐coarsening model, which highlights the activation energy reduction for grain boundary migration. Leveraging this mechanism, this study uses MABr/DMSO mixed vapor to further enhance grain boundary migration kinetics and successfully obtain even larger grains, leading to an impressive improvement in power conversion efficiency (17.64%) relative to the pristine PSCs (15.13%). The revelation of grain boundary migration‐assisted grain growth provides a guide for the future development of polycrystalline perovskite thin‐film solar cells.
MA2Pb3I8(DMSO)2 intermediate is identified and tracked during the methylammonium lead triiodide thin‐film anneal process under dimethyl sulfoxide (DMSO) solvent vapor, which helps to reduce the activation energy of perovskite grain boundary migration. Leveraging this mechanism, an MABr/DMSO mix vapor anneal method is developed to further facillitate grain goundary migration to achieve 17.64% efficiency in NiO‐based inverted perovskite solar cell.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201604944</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Activation analysis ; Activation energy ; Annealing ; Br embedment ; Coarsening ; Crystal structure ; Dimethyl sulfoxide ; Efficiency ; Energy consumption ; Energy conversion efficiency ; Grain boundaries ; Grain boundary migration ; Grain growth ; Grains ; large perovskite domain ; Materials science ; Nanorods ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Reaction kinetics ; Solar cells ; solvent vapor anneal ; Solvents ; Thin films</subject><ispartof>Advanced functional materials, 2017-03, Vol.27 (12), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4164-5b00feecc02321bd69ec9e8da5383fde233d614722ffd5f31c38f39a2f75928b3</citedby><cites>FETCH-LOGICAL-c4164-5b00feecc02321bd69ec9e8da5383fde233d614722ffd5f31c38f39a2f75928b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201604944$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201604944$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xiao, Shuang</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Meng, Xiangyue</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Chen, Haining</creatorcontrib><creatorcontrib>Zheng, Xiaoli</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Qu, Yongquan</creatorcontrib><creatorcontrib>Yang, Shihe</creatorcontrib><title>Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films</title><title>Advanced functional materials</title><description>Hybrid organic/inorganic perovskite solar cells (PSCs) have shown great potential in meeting the future challenges in energy and environment. Solvent‐vapor‐assisted posttreatment strategies are developed to improve the perovskite film quality for achieving higher efficiency. However, the intrinsic working mechanisms of these strategies have not been well understood yet. This study identifies an MA2Pb3I8(DMSO)2 intermediate phase formed during the annealing process of methylammonium lead triiodide in dimethyl sulfoxide (DMSO) atmosphere and located the reaction sites at perovskite grain boundaries by observing and rationalizing the growth of nanorods of the intermediate. This enables us to propose and validate an intermediate‐assisted grain‐coarsening model, which highlights the activation energy reduction for grain boundary migration. Leveraging this mechanism, this study uses MABr/DMSO mixed vapor to further enhance grain boundary migration kinetics and successfully obtain even larger grains, leading to an impressive improvement in power conversion efficiency (17.64%) relative to the pristine PSCs (15.13%). The revelation of grain boundary migration‐assisted grain growth provides a guide for the future development of polycrystalline perovskite thin‐film solar cells.
MA2Pb3I8(DMSO)2 intermediate is identified and tracked during the methylammonium lead triiodide thin‐film anneal process under dimethyl sulfoxide (DMSO) solvent vapor, which helps to reduce the activation energy of perovskite grain boundary migration. Leveraging this mechanism, an MABr/DMSO mix vapor anneal method is developed to further facillitate grain goundary migration to achieve 17.64% efficiency in NiO‐based inverted perovskite solar cell.</description><subject>Activation analysis</subject><subject>Activation energy</subject><subject>Annealing</subject><subject>Br embedment</subject><subject>Coarsening</subject><subject>Crystal structure</subject><subject>Dimethyl sulfoxide</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Grain boundaries</subject><subject>Grain boundary migration</subject><subject>Grain growth</subject><subject>Grains</subject><subject>large perovskite domain</subject><subject>Materials science</subject><subject>Nanorods</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Reaction kinetics</subject><subject>Solar cells</subject><subject>solvent vapor anneal</subject><subject>Solvents</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhleolaC0154tceklwWN7P3xECSkRQUSiVL1Zzu44Mnjt1N6kyrH_vIZUIHHhNKOZ5xmN9BbFV6BjoJSd6870Y0ahokIKcVScQAXViFPWfHjp4ddx8SmlB0qhrrk4Kf7e-x1aZ_2aaHKNezL3A8YeO6sHJNaTu-B26AfyU29CJMuQBu096mdjCOTSOx3XSCZxnzcuj5FMQ6-tTyQYchvX2oce84pcZalDssQYdunR5vMz6_r0ufhotEv45X89Le5nlz8mV6PF7ff55GIxagVUYlSuKDWIbUsZZ7DqKomtxKbTJW-46ZBx3lUgasaM6UrDoeWN4VIzU5eSNSt-Wnw73N3E8HuLaVC9TS06pz2GbVLQSC4BalFm9OwN-hC20efvFEhGBQCIJlPjA9XGkFJEozbR9jruFVD1lIh6SkS9JJIFeRD-WIf7d2h1MZ3dvLr_AEj9kR8</recordid><startdate>20170324</startdate><enddate>20170324</enddate><creator>Xiao, Shuang</creator><creator>Bai, Yang</creator><creator>Meng, Xiangyue</creator><creator>Zhang, Teng</creator><creator>Chen, Haining</creator><creator>Zheng, Xiaoli</creator><creator>Hu, Chen</creator><creator>Qu, Yongquan</creator><creator>Yang, Shihe</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170324</creationdate><title>Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films</title><author>Xiao, Shuang ; Bai, Yang ; Meng, Xiangyue ; Zhang, Teng ; Chen, Haining ; Zheng, Xiaoli ; Hu, Chen ; Qu, Yongquan ; Yang, Shihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4164-5b00feecc02321bd69ec9e8da5383fde233d614722ffd5f31c38f39a2f75928b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation analysis</topic><topic>Activation energy</topic><topic>Annealing</topic><topic>Br embedment</topic><topic>Coarsening</topic><topic>Crystal structure</topic><topic>Dimethyl sulfoxide</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Grain boundaries</topic><topic>Grain boundary migration</topic><topic>Grain growth</topic><topic>Grains</topic><topic>large perovskite domain</topic><topic>Materials science</topic><topic>Nanorods</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Reaction kinetics</topic><topic>Solar cells</topic><topic>solvent vapor anneal</topic><topic>Solvents</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Shuang</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Meng, Xiangyue</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Chen, Haining</creatorcontrib><creatorcontrib>Zheng, Xiaoli</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Qu, Yongquan</creatorcontrib><creatorcontrib>Yang, Shihe</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Shuang</au><au>Bai, Yang</au><au>Meng, Xiangyue</au><au>Zhang, Teng</au><au>Chen, Haining</au><au>Zheng, Xiaoli</au><au>Hu, Chen</au><au>Qu, Yongquan</au><au>Yang, Shihe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films</atitle><jtitle>Advanced functional materials</jtitle><date>2017-03-24</date><risdate>2017</risdate><volume>27</volume><issue>12</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Hybrid organic/inorganic perovskite solar cells (PSCs) have shown great potential in meeting the future challenges in energy and environment. Solvent‐vapor‐assisted posttreatment strategies are developed to improve the perovskite film quality for achieving higher efficiency. However, the intrinsic working mechanisms of these strategies have not been well understood yet. This study identifies an MA2Pb3I8(DMSO)2 intermediate phase formed during the annealing process of methylammonium lead triiodide in dimethyl sulfoxide (DMSO) atmosphere and located the reaction sites at perovskite grain boundaries by observing and rationalizing the growth of nanorods of the intermediate. This enables us to propose and validate an intermediate‐assisted grain‐coarsening model, which highlights the activation energy reduction for grain boundary migration. Leveraging this mechanism, this study uses MABr/DMSO mixed vapor to further enhance grain boundary migration kinetics and successfully obtain even larger grains, leading to an impressive improvement in power conversion efficiency (17.64%) relative to the pristine PSCs (15.13%). The revelation of grain boundary migration‐assisted grain growth provides a guide for the future development of polycrystalline perovskite thin‐film solar cells.
MA2Pb3I8(DMSO)2 intermediate is identified and tracked during the methylammonium lead triiodide thin‐film anneal process under dimethyl sulfoxide (DMSO) solvent vapor, which helps to reduce the activation energy of perovskite grain boundary migration. Leveraging this mechanism, an MABr/DMSO mix vapor anneal method is developed to further facillitate grain goundary migration to achieve 17.64% efficiency in NiO‐based inverted perovskite solar cell.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201604944</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-03, Vol.27 (12), p.np-n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893911745 |
source | Wiley Online Library All Journals |
subjects | Activation analysis Activation energy Annealing Br embedment Coarsening Crystal structure Dimethyl sulfoxide Efficiency Energy consumption Energy conversion efficiency Grain boundaries Grain boundary migration Grain growth Grains large perovskite domain Materials science Nanorods perovskite solar cells Perovskites Photovoltaic cells Reaction kinetics Solar cells solvent vapor anneal Solvents Thin films |
title | Unveiling a Key Intermediate in Solvent Vapor Postannealing to Enlarge Crystalline Domains of Organometal Halide Perovskite Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20a%20Key%20Intermediate%20in%20Solvent%20Vapor%20Postannealing%20to%20Enlarge%20Crystalline%20Domains%20of%20Organometal%20Halide%20Perovskite%20Films&rft.jtitle=Advanced%20functional%20materials&rft.au=Xiao,%20Shuang&rft.date=2017-03-24&rft.volume=27&rft.issue=12&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201604944&rft_dat=%3Cproquest_cross%3E1893911745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920411148&rft_id=info:pmid/&rfr_iscdi=true |