Selecting Adaptive Survey Design Strata with Partial R-indicators

Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International statistical review 2017-04, Vol.85 (1), p.143-163
Hauptverfasser: Schouten, Barry, Shlomo, Natalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 1
container_start_page 143
container_title International statistical review
container_volume 85
creator Schouten, Barry
Shlomo, Natalie
description Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance may not be straightforward as corresponding optimisation problems are often highly non-linear and non-convex. In this paper, we discuss how to choose strata in such designs and how to allocate these strata in a sequential design with two phases. We use partial R-indicators to build profiles of the data units where more or less attention is required in the data collection. In allocating cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys that are run continuously. We demonstrate the impact of the sample size in a simulation study and provide an application to a real survey, the Dutch Crime Victimisation Survey.
doi_str_mv 10.1111/insr.12159
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893910856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44840874</jstor_id><sourcerecordid>44840874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3929-595b7c07f9a0f263bb3c405160e1a25c4a0df5c49e4c901db723440646dbcf473</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pxbtQ8CJC50uTtM1xzF-DobLqOaRpOjO6dibpxv57O6sePPgu7_L5Ph5fhM4xjHA3N6Z2doQjzPgBGuCE4ZClETlEAyAQh0lC6DE6cW4JACRK6QCNM11p5U29CMaFXHuz0UHW2o3eBbfamUUdZN5KL4Ot8e_Bi7TeyCqYh6YujJK-se4UHZWycvrsew_R2_3d6-QxnD0_TCfjWagIj3jIOMsTBUnJJZRRTPKcKAoMx6CxjJiiEoqyW1xTxQEXeRIRSiGmcZGrkiZkiK76u2vbfLTaebEyTumqkrVuWidwygnHkLK4o5d_6LJpbd1916mUUAIYeKeue6Vs45zVpVhbs5J2JzCIfZti36b4arPDuMdbU-ndP1JMn7L5T-aizyxdV9RvhtKUQppQ8gm4u39f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883430109</pqid></control><display><type>article</type><title>Selecting Adaptive Survey Design Strata with Partial R-indicators</title><source>Wiley-Blackwell Journals</source><source>JSTOR Mathematics and Statistics</source><source>JSTOR</source><creator>Schouten, Barry ; Shlomo, Natalie</creator><creatorcontrib>Schouten, Barry ; Shlomo, Natalie</creatorcontrib><description>Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance may not be straightforward as corresponding optimisation problems are often highly non-linear and non-convex. In this paper, we discuss how to choose strata in such designs and how to allocate these strata in a sequential design with two phases. We use partial R-indicators to build profiles of the data units where more or less attention is required in the data collection. In allocating cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys that are run continuously. We demonstrate the impact of the sample size in a simulation study and provide an application to a real survey, the Dutch Crime Victimisation Survey.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12159</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Building components ; Construction costs ; Data acquisition ; Data collection ; Non‐response ; Optimization ; paradata ; Population (statistical) ; representativeness ; responsive survey design ; Samples ; Simulation ; Strata</subject><ispartof>International statistical review, 2017-04, Vol.85 (1), p.143-163</ispartof><rights>2017 International Statistical Institute</rights><rights>2015 The Authors. International Statistical Review © 2015 International Statistical Institute</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3929-595b7c07f9a0f263bb3c405160e1a25c4a0df5c49e4c901db723440646dbcf473</citedby><cites>FETCH-LOGICAL-c3929-595b7c07f9a0f263bb3c405160e1a25c4a0df5c49e4c901db723440646dbcf473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44840874$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44840874$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Schouten, Barry</creatorcontrib><creatorcontrib>Shlomo, Natalie</creatorcontrib><title>Selecting Adaptive Survey Design Strata with Partial R-indicators</title><title>International statistical review</title><description>Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance may not be straightforward as corresponding optimisation problems are often highly non-linear and non-convex. In this paper, we discuss how to choose strata in such designs and how to allocate these strata in a sequential design with two phases. We use partial R-indicators to build profiles of the data units where more or less attention is required in the data collection. In allocating cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys that are run continuously. We demonstrate the impact of the sample size in a simulation study and provide an application to a real survey, the Dutch Crime Victimisation Survey.</description><subject>Building components</subject><subject>Construction costs</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Non‐response</subject><subject>Optimization</subject><subject>paradata</subject><subject>Population (statistical)</subject><subject>representativeness</subject><subject>responsive survey design</subject><subject>Samples</subject><subject>Simulation</subject><subject>Strata</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pxbtQ8CJC50uTtM1xzF-DobLqOaRpOjO6dibpxv57O6sePPgu7_L5Ph5fhM4xjHA3N6Z2doQjzPgBGuCE4ZClETlEAyAQh0lC6DE6cW4JACRK6QCNM11p5U29CMaFXHuz0UHW2o3eBbfamUUdZN5KL4Ot8e_Bi7TeyCqYh6YujJK-se4UHZWycvrsew_R2_3d6-QxnD0_TCfjWagIj3jIOMsTBUnJJZRRTPKcKAoMx6CxjJiiEoqyW1xTxQEXeRIRSiGmcZGrkiZkiK76u2vbfLTaebEyTumqkrVuWidwygnHkLK4o5d_6LJpbd1916mUUAIYeKeue6Vs45zVpVhbs5J2JzCIfZti36b4arPDuMdbU-ndP1JMn7L5T-aizyxdV9RvhtKUQppQ8gm4u39f</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Schouten, Barry</creator><creator>Shlomo, Natalie</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170401</creationdate><title>Selecting Adaptive Survey Design Strata with Partial R-indicators</title><author>Schouten, Barry ; Shlomo, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3929-595b7c07f9a0f263bb3c405160e1a25c4a0df5c49e4c901db723440646dbcf473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Building components</topic><topic>Construction costs</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Non‐response</topic><topic>Optimization</topic><topic>paradata</topic><topic>Population (statistical)</topic><topic>representativeness</topic><topic>responsive survey design</topic><topic>Samples</topic><topic>Simulation</topic><topic>Strata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schouten, Barry</creatorcontrib><creatorcontrib>Shlomo, Natalie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schouten, Barry</au><au>Shlomo, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting Adaptive Survey Design Strata with Partial R-indicators</atitle><jtitle>International statistical review</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>85</volume><issue>1</issue><spage>143</spage><epage>163</epage><pages>143-163</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance may not be straightforward as corresponding optimisation problems are often highly non-linear and non-convex. In this paper, we discuss how to choose strata in such designs and how to allocate these strata in a sequential design with two phases. We use partial R-indicators to build profiles of the data units where more or less attention is required in the data collection. In allocating cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys that are run continuously. We demonstrate the impact of the sample size in a simulation study and provide an application to a real survey, the Dutch Crime Victimisation Survey.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/insr.12159</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0306-7734
ispartof International statistical review, 2017-04, Vol.85 (1), p.143-163
issn 0306-7734
1751-5823
language eng
recordid cdi_proquest_miscellaneous_1893910856
source Wiley-Blackwell Journals; JSTOR Mathematics and Statistics; JSTOR
subjects Building components
Construction costs
Data acquisition
Data collection
Non‐response
Optimization
paradata
Population (statistical)
representativeness
responsive survey design
Samples
Simulation
Strata
title Selecting Adaptive Survey Design Strata with Partial R-indicators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20Adaptive%20Survey%20Design%20Strata%20with%20Partial%20R-indicators&rft.jtitle=International%20statistical%20review&rft.au=Schouten,%20Barry&rft.date=2017-04-01&rft.volume=85&rft.issue=1&rft.spage=143&rft.epage=163&rft.pages=143-163&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12159&rft_dat=%3Cjstor_proqu%3E44840874%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883430109&rft_id=info:pmid/&rft_jstor_id=44840874&rfr_iscdi=true