Selecting Adaptive Survey Design Strata with Partial R-indicators
Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance m...
Gespeichert in:
Veröffentlicht in: | International statistical review 2017-04, Vol.85 (1), p.143-163 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 1 |
container_start_page | 143 |
container_title | International statistical review |
container_volume | 85 |
creator | Schouten, Barry Shlomo, Natalie |
description | Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance may not be straightforward as corresponding optimisation problems are often highly non-linear and non-convex. In this paper, we discuss how to choose strata in such designs and how to allocate these strata in a sequential design with two phases. We use partial R-indicators to build profiles of the data units where more or less attention is required in the data collection. In allocating cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys that are run continuously. We demonstrate the impact of the sample size in a simulation study and provide an application to a real survey, the Dutch Crime Victimisation Survey. |
doi_str_mv | 10.1111/insr.12159 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893910856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44840874</jstor_id><sourcerecordid>44840874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3929-595b7c07f9a0f263bb3c405160e1a25c4a0df5c49e4c901db723440646dbcf473</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pxbtQ8CJC50uTtM1xzF-DobLqOaRpOjO6dibpxv57O6sePPgu7_L5Ph5fhM4xjHA3N6Z2doQjzPgBGuCE4ZClETlEAyAQh0lC6DE6cW4JACRK6QCNM11p5U29CMaFXHuz0UHW2o3eBbfamUUdZN5KL4Ot8e_Bi7TeyCqYh6YujJK-se4UHZWycvrsew_R2_3d6-QxnD0_TCfjWagIj3jIOMsTBUnJJZRRTPKcKAoMx6CxjJiiEoqyW1xTxQEXeRIRSiGmcZGrkiZkiK76u2vbfLTaebEyTumqkrVuWidwygnHkLK4o5d_6LJpbd1916mUUAIYeKeue6Vs45zVpVhbs5J2JzCIfZti36b4arPDuMdbU-ndP1JMn7L5T-aizyxdV9RvhtKUQppQ8gm4u39f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883430109</pqid></control><display><type>article</type><title>Selecting Adaptive Survey Design Strata with Partial R-indicators</title><source>Wiley-Blackwell Journals</source><source>JSTOR Mathematics and Statistics</source><source>JSTOR</source><creator>Schouten, Barry ; Shlomo, Natalie</creator><creatorcontrib>Schouten, Barry ; Shlomo, Natalie</creatorcontrib><description>Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance may not be straightforward as corresponding optimisation problems are often highly non-linear and non-convex. In this paper, we discuss how to choose strata in such designs and how to allocate these strata in a sequential design with two phases. We use partial R-indicators to build profiles of the data units where more or less attention is required in the data collection. In allocating cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys that are run continuously. We demonstrate the impact of the sample size in a simulation study and provide an application to a real survey, the Dutch Crime Victimisation Survey.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12159</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Building components ; Construction costs ; Data acquisition ; Data collection ; Non‐response ; Optimization ; paradata ; Population (statistical) ; representativeness ; responsive survey design ; Samples ; Simulation ; Strata</subject><ispartof>International statistical review, 2017-04, Vol.85 (1), p.143-163</ispartof><rights>2017 International Statistical Institute</rights><rights>2015 The Authors. International Statistical Review © 2015 International Statistical Institute</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3929-595b7c07f9a0f263bb3c405160e1a25c4a0df5c49e4c901db723440646dbcf473</citedby><cites>FETCH-LOGICAL-c3929-595b7c07f9a0f263bb3c405160e1a25c4a0df5c49e4c901db723440646dbcf473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44840874$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44840874$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Schouten, Barry</creatorcontrib><creatorcontrib>Shlomo, Natalie</creatorcontrib><title>Selecting Adaptive Survey Design Strata with Partial R-indicators</title><title>International statistical review</title><description>Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance may not be straightforward as corresponding optimisation problems are often highly non-linear and non-convex. In this paper, we discuss how to choose strata in such designs and how to allocate these strata in a sequential design with two phases. We use partial R-indicators to build profiles of the data units where more or less attention is required in the data collection. In allocating cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys that are run continuously. We demonstrate the impact of the sample size in a simulation study and provide an application to a real survey, the Dutch Crime Victimisation Survey.</description><subject>Building components</subject><subject>Construction costs</subject><subject>Data acquisition</subject><subject>Data collection</subject><subject>Non‐response</subject><subject>Optimization</subject><subject>paradata</subject><subject>Population (statistical)</subject><subject>representativeness</subject><subject>responsive survey design</subject><subject>Samples</subject><subject>Simulation</subject><subject>Strata</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pxbtQ8CJC50uTtM1xzF-DobLqOaRpOjO6dibpxv57O6sePPgu7_L5Ph5fhM4xjHA3N6Z2doQjzPgBGuCE4ZClETlEAyAQh0lC6DE6cW4JACRK6QCNM11p5U29CMaFXHuz0UHW2o3eBbfamUUdZN5KL4Ot8e_Bi7TeyCqYh6YujJK-se4UHZWycvrsew_R2_3d6-QxnD0_TCfjWagIj3jIOMsTBUnJJZRRTPKcKAoMx6CxjJiiEoqyW1xTxQEXeRIRSiGmcZGrkiZkiK76u2vbfLTaebEyTumqkrVuWidwygnHkLK4o5d_6LJpbd1916mUUAIYeKeue6Vs45zVpVhbs5J2JzCIfZti36b4arPDuMdbU-ndP1JMn7L5T-aizyxdV9RvhtKUQppQ8gm4u39f</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Schouten, Barry</creator><creator>Shlomo, Natalie</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170401</creationdate><title>Selecting Adaptive Survey Design Strata with Partial R-indicators</title><author>Schouten, Barry ; Shlomo, Natalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3929-595b7c07f9a0f263bb3c405160e1a25c4a0df5c49e4c901db723440646dbcf473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Building components</topic><topic>Construction costs</topic><topic>Data acquisition</topic><topic>Data collection</topic><topic>Non‐response</topic><topic>Optimization</topic><topic>paradata</topic><topic>Population (statistical)</topic><topic>representativeness</topic><topic>responsive survey design</topic><topic>Samples</topic><topic>Simulation</topic><topic>Strata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schouten, Barry</creatorcontrib><creatorcontrib>Shlomo, Natalie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schouten, Barry</au><au>Shlomo, Natalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting Adaptive Survey Design Strata with Partial R-indicators</atitle><jtitle>International statistical review</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>85</volume><issue>1</issue><spage>143</spage><epage>163</epage><pages>143-163</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>Recent survey literature shows an increasing interest in survey designs that adapt data collection to characteristics of the survey target population. Given a specified quality objective function, the designs attempt to find an optimal balance between quality and costs. Finding the optimal balance may not be straightforward as corresponding optimisation problems are often highly non-linear and non-convex. In this paper, we discuss how to choose strata in such designs and how to allocate these strata in a sequential design with two phases. We use partial R-indicators to build profiles of the data units where more or less attention is required in the data collection. In allocating cases, we look at two extremes: surveys that are run only once, or infrequent, and surveys that are run continuously. We demonstrate the impact of the sample size in a simulation study and provide an application to a real survey, the Dutch Crime Victimisation Survey.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/insr.12159</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-7734 |
ispartof | International statistical review, 2017-04, Vol.85 (1), p.143-163 |
issn | 0306-7734 1751-5823 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893910856 |
source | Wiley-Blackwell Journals; JSTOR Mathematics and Statistics; JSTOR |
subjects | Building components Construction costs Data acquisition Data collection Non‐response Optimization paradata Population (statistical) representativeness responsive survey design Samples Simulation Strata |
title | Selecting Adaptive Survey Design Strata with Partial R-indicators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20Adaptive%20Survey%20Design%20Strata%20with%20Partial%20R-indicators&rft.jtitle=International%20statistical%20review&rft.au=Schouten,%20Barry&rft.date=2017-04-01&rft.volume=85&rft.issue=1&rft.spage=143&rft.epage=163&rft.pages=143-163&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12159&rft_dat=%3Cjstor_proqu%3E44840874%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883430109&rft_id=info:pmid/&rft_jstor_id=44840874&rfr_iscdi=true |