Track fusion based on threshold factor classification algorithm in wireless sensor networks

Summary Traditional tracking classification algorithm has been widely applied to target tracking in wireless sensor networks. In this paper, focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of communication systems 2017-05, Vol.30 (7), p.np-n/a
Hauptverfasser: Wang, Xiang, Wang, Tao, Chen, Shiyang, Fan, Renhao, Xu, Yang, Wang, Weike, Li, Hongge, Xia, Tongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page np
container_title International journal of communication systems
container_volume 30
creator Wang, Xiang
Wang, Tao
Chen, Shiyang
Fan, Renhao
Xu, Yang
Wang, Weike
Li, Hongge
Xia, Tongsheng
description Summary Traditional tracking classification algorithm has been widely applied to target tracking in wireless sensor networks. In this paper, focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm extracts the motion model according to the intrinsic properties of the target. It updates the iterative center according to the real‐time motion state of the moving target and timely filters out the weak correlated or uncorrelated data. In order to show the improved threshold factor classification algorithm is more effective, we compare the proposed algorithm with the classification algorithm based on the Euclidean distance comprehensive function. Experimental results show that through the proposed algorithm, the mean error and variance in the direction of x/y/z have been reduced to a certain extent, and the computation time consumed is also reduced. Copyright © 2016 John Wiley & Sons, Ltd. Focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm extracts the motion model according to the intrinsic properties of the target. It updates the iterative center according to the real‐time motion state of the moving target and timely filters out the weak correlated or uncorrelated data.
doi_str_mv 10.1002/dac.3164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893910219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321095547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3264-a692c1474d85e0d21aa6ade9bfc8c07321461891832b87cbbf4c768c1b593c23</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZmkn2IzmW-gmCl948LNls1qZNNzWzS-m_N2sFQfA07-GZYXgJuQY6A0rZXaP0jEORnZAJUClTAA6nYy6zNOc5nJMLxDWlVLAin5D3ZVB6k7QDWt8ltULTJDH0q2Bw5V2TtEr3PiTaKUTbWq36ESr34YPtV9vEdsneBuMMYoKmw2g70-992OAlOWuVQ3P1M6dk-fiwXDynr29PL4v5a6o5K7JUFZJpyMqsEbmhDQOlCtUYWbdaaFpyBlkBQoLgrBalrus202UhNNS55JrxKbk9nt0F_zkY7KutRW2cU53xA1Zxl0ugDGSkN3_o2g-hi89FJWgsUEr5e1AHjxhMW-2C3apwqIBWY8lVLLkaS440PdK9debwr6vu54tv_wXS_X13</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880100999</pqid></control><display><type>article</type><title>Track fusion based on threshold factor classification algorithm in wireless sensor networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiang ; Wang, Tao ; Chen, Shiyang ; Fan, Renhao ; Xu, Yang ; Wang, Weike ; Li, Hongge ; Xia, Tongsheng</creator><creatorcontrib>Wang, Xiang ; Wang, Tao ; Chen, Shiyang ; Fan, Renhao ; Xu, Yang ; Wang, Weike ; Li, Hongge ; Xia, Tongsheng</creatorcontrib><description>Summary Traditional tracking classification algorithm has been widely applied to target tracking in wireless sensor networks. In this paper, focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm extracts the motion model according to the intrinsic properties of the target. It updates the iterative center according to the real‐time motion state of the moving target and timely filters out the weak correlated or uncorrelated data. In order to show the improved threshold factor classification algorithm is more effective, we compare the proposed algorithm with the classification algorithm based on the Euclidean distance comprehensive function. Experimental results show that through the proposed algorithm, the mean error and variance in the direction of x/y/z have been reduced to a certain extent, and the computation time consumed is also reduced. Copyright © 2016 John Wiley &amp; Sons, Ltd. Focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm extracts the motion model according to the intrinsic properties of the target. It updates the iterative center according to the real‐time motion state of the moving target and timely filters out the weak correlated or uncorrelated data.</description><identifier>ISSN: 1074-5351</identifier><identifier>EISSN: 1099-1131</identifier><identifier>DOI: 10.1002/dac.3164</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Classification ; computation time ; improved threshold factor classification algorithm ; Mathematical models ; motion model ; Remote sensors ; Target tracking ; Thresholds ; Tracking ; Wireless networks ; wireless sensor networks</subject><ispartof>International journal of communication systems, 2017-05, Vol.30 (7), p.np-n/a</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3264-a692c1474d85e0d21aa6ade9bfc8c07321461891832b87cbbf4c768c1b593c23</citedby><cites>FETCH-LOGICAL-c3264-a692c1474d85e0d21aa6ade9bfc8c07321461891832b87cbbf4c768c1b593c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fdac.3164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fdac.3164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Chen, Shiyang</creatorcontrib><creatorcontrib>Fan, Renhao</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Wang, Weike</creatorcontrib><creatorcontrib>Li, Hongge</creatorcontrib><creatorcontrib>Xia, Tongsheng</creatorcontrib><title>Track fusion based on threshold factor classification algorithm in wireless sensor networks</title><title>International journal of communication systems</title><description>Summary Traditional tracking classification algorithm has been widely applied to target tracking in wireless sensor networks. In this paper, focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm extracts the motion model according to the intrinsic properties of the target. It updates the iterative center according to the real‐time motion state of the moving target and timely filters out the weak correlated or uncorrelated data. In order to show the improved threshold factor classification algorithm is more effective, we compare the proposed algorithm with the classification algorithm based on the Euclidean distance comprehensive function. Experimental results show that through the proposed algorithm, the mean error and variance in the direction of x/y/z have been reduced to a certain extent, and the computation time consumed is also reduced. Copyright © 2016 John Wiley &amp; Sons, Ltd. Focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm extracts the motion model according to the intrinsic properties of the target. It updates the iterative center according to the real‐time motion state of the moving target and timely filters out the weak correlated or uncorrelated data.</description><subject>Algorithms</subject><subject>Classification</subject><subject>computation time</subject><subject>improved threshold factor classification algorithm</subject><subject>Mathematical models</subject><subject>motion model</subject><subject>Remote sensors</subject><subject>Target tracking</subject><subject>Thresholds</subject><subject>Tracking</subject><subject>Wireless networks</subject><subject>wireless sensor networks</subject><issn>1074-5351</issn><issn>1099-1131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZmkn2IzmW-gmCl948LNls1qZNNzWzS-m_N2sFQfA07-GZYXgJuQY6A0rZXaP0jEORnZAJUClTAA6nYy6zNOc5nJMLxDWlVLAin5D3ZVB6k7QDWt8ltULTJDH0q2Bw5V2TtEr3PiTaKUTbWq36ESr34YPtV9vEdsneBuMMYoKmw2g70-992OAlOWuVQ3P1M6dk-fiwXDynr29PL4v5a6o5K7JUFZJpyMqsEbmhDQOlCtUYWbdaaFpyBlkBQoLgrBalrus202UhNNS55JrxKbk9nt0F_zkY7KutRW2cU53xA1Zxl0ugDGSkN3_o2g-hi89FJWgsUEr5e1AHjxhMW-2C3apwqIBWY8lVLLkaS440PdK9debwr6vu54tv_wXS_X13</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Wang, Xiang</creator><creator>Wang, Tao</creator><creator>Chen, Shiyang</creator><creator>Fan, Renhao</creator><creator>Xu, Yang</creator><creator>Wang, Weike</creator><creator>Li, Hongge</creator><creator>Xia, Tongsheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20170510</creationdate><title>Track fusion based on threshold factor classification algorithm in wireless sensor networks</title><author>Wang, Xiang ; Wang, Tao ; Chen, Shiyang ; Fan, Renhao ; Xu, Yang ; Wang, Weike ; Li, Hongge ; Xia, Tongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3264-a692c1474d85e0d21aa6ade9bfc8c07321461891832b87cbbf4c768c1b593c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>computation time</topic><topic>improved threshold factor classification algorithm</topic><topic>Mathematical models</topic><topic>motion model</topic><topic>Remote sensors</topic><topic>Target tracking</topic><topic>Thresholds</topic><topic>Tracking</topic><topic>Wireless networks</topic><topic>wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Chen, Shiyang</creatorcontrib><creatorcontrib>Fan, Renhao</creatorcontrib><creatorcontrib>Xu, Yang</creatorcontrib><creatorcontrib>Wang, Weike</creatorcontrib><creatorcontrib>Li, Hongge</creatorcontrib><creatorcontrib>Xia, Tongsheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of communication systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiang</au><au>Wang, Tao</au><au>Chen, Shiyang</au><au>Fan, Renhao</au><au>Xu, Yang</au><au>Wang, Weike</au><au>Li, Hongge</au><au>Xia, Tongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Track fusion based on threshold factor classification algorithm in wireless sensor networks</atitle><jtitle>International journal of communication systems</jtitle><date>2017-05-10</date><risdate>2017</risdate><volume>30</volume><issue>7</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1074-5351</issn><eissn>1099-1131</eissn><abstract>Summary Traditional tracking classification algorithm has been widely applied to target tracking in wireless sensor networks. In this paper, focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm extracts the motion model according to the intrinsic properties of the target. It updates the iterative center according to the real‐time motion state of the moving target and timely filters out the weak correlated or uncorrelated data. In order to show the improved threshold factor classification algorithm is more effective, we compare the proposed algorithm with the classification algorithm based on the Euclidean distance comprehensive function. Experimental results show that through the proposed algorithm, the mean error and variance in the direction of x/y/z have been reduced to a certain extent, and the computation time consumed is also reduced. Copyright © 2016 John Wiley &amp; Sons, Ltd. Focusing on the accuracy of target tracking in wireless sensor networks, we propose an improved threshold factor track classification algorithm. The algorithm extracts the motion model according to the intrinsic properties of the target. It updates the iterative center according to the real‐time motion state of the moving target and timely filters out the weak correlated or uncorrelated data.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/dac.3164</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1074-5351
ispartof International journal of communication systems, 2017-05, Vol.30 (7), p.np-n/a
issn 1074-5351
1099-1131
language eng
recordid cdi_proquest_miscellaneous_1893910219
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Classification
computation time
improved threshold factor classification algorithm
Mathematical models
motion model
Remote sensors
Target tracking
Thresholds
Tracking
Wireless networks
wireless sensor networks
title Track fusion based on threshold factor classification algorithm in wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Track%20fusion%20based%20on%20threshold%20factor%20classification%20algorithm%20in%20wireless%20sensor%20networks&rft.jtitle=International%20journal%20of%20communication%20systems&rft.au=Wang,%20Xiang&rft.date=2017-05-10&rft.volume=30&rft.issue=7&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1074-5351&rft.eissn=1099-1131&rft_id=info:doi/10.1002/dac.3164&rft_dat=%3Cproquest_cross%3E4321095547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880100999&rft_id=info:pmid/&rfr_iscdi=true