Active sites for CO₂ hydrogenation to methanol on Cu/ZnO catalysts

The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al₂O₃) catalysts for carbon dioxide (CO₂) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. We report a direct comparison between the activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-03, Vol.355 (6331), p.1296-1299
Hauptverfasser: Kattel, Shyam, Ramírez, Pedro J., Chen, Jingguang G., Rodriguez, José A., Liu, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1299
container_issue 6331
container_start_page 1296
container_title Science (American Association for the Advancement of Science)
container_volume 355
creator Kattel, Shyam
Ramírez, Pedro J.
Chen, Jingguang G.
Rodriguez, José A.
Liu, Ping
description The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al₂O₃) catalysts for carbon dioxide (CO₂) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. We report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO and allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. Our results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.
doi_str_mv 10.1126/science.aal3573
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893906999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918071</jstor_id><sourcerecordid>24918071</sourcerecordid><originalsourceid>FETCH-LOGICAL-g223t-a6835ac1185853f5a8ed1151dd3a9b4cde544f96191b70089b9968e64e8e38733</originalsourceid><addsrcrecordid>eNqN0D1PwzAQBmALgUQpzExIllhY0tpx7PjGKnxKlbrAwhK5zqVNldoldpC69qfySwgqExPT6XSPXuleQq45m3CeqmmwDTqLE2NaIXNxQkacgUwgZeKUjBgTKtEsl-fkIoQNY8MNxIjcz2xsPpGGJmKgte9osfg6HOh6X3V-hc7ExjsaPd1iXBvnWzqsRT99dwtqTTTtPsRwSc5q0wa8-p1j8vb48Fo8J_PF00sxmyerNBUxMUoLaSznWmopamk0VpxLXlXCwDKzFcosq0Fx4MucMQ1LAKVRZahR6FyIMbk75u46_9FjiOW2CRbb1jj0fSi5BgFMAcA_qB5KS0Gygd7-oRvfd2545KjyVOufwJuj2oTou3LXNVvT7cs0Az7UysU3-stzGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881272889</pqid></control><display><type>article</type><title>Active sites for CO₂ hydrogenation to methanol on Cu/ZnO catalysts</title><source>Science Online_科学在线</source><source>JSTOR</source><creator>Kattel, Shyam ; Ramírez, Pedro J. ; Chen, Jingguang G. ; Rodriguez, José A. ; Liu, Ping</creator><creatorcontrib>Kattel, Shyam ; Ramírez, Pedro J. ; Chen, Jingguang G. ; Rodriguez, José A. ; Liu, Ping</creatorcontrib><description>The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al₂O₃) catalysts for carbon dioxide (CO₂) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. We report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO and allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. Our results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aal3573</identifier><language>eng</language><publisher>Washington: American Association for the Advancement of Science</publisher><subject>Aluminum ; Aluminum oxide ; Bimetals ; Carbon dioxide ; Catalysis ; Catalysts ; Chemical synthesis ; Computer simulation ; Copper ; Density functional theory ; Hydrogenation ; Industrial production ; Intermediates ; Methanol ; Methyl alcohol ; Monte Carlo simulation ; Oxidation ; Photoelectric emission ; Photoelectron spectroscopy ; Spectroscopy ; Surface chemistry ; Zinc ; Zinc oxide ; Zinc oxides</subject><ispartof>Science (American Association for the Advancement of Science), 2017-03, Vol.355 (6331), p.1296-1299</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918071$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918071$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Kattel, Shyam</creatorcontrib><creatorcontrib>Ramírez, Pedro J.</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><creatorcontrib>Rodriguez, José A.</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><title>Active sites for CO₂ hydrogenation to methanol on Cu/ZnO catalysts</title><title>Science (American Association for the Advancement of Science)</title><description>The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al₂O₃) catalysts for carbon dioxide (CO₂) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. We report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO and allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. Our results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.</description><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Hydrogenation</subject><subject>Industrial production</subject><subject>Intermediates</subject><subject>Methanol</subject><subject>Methyl alcohol</subject><subject>Monte Carlo simulation</subject><subject>Oxidation</subject><subject>Photoelectric emission</subject><subject>Photoelectron spectroscopy</subject><subject>Spectroscopy</subject><subject>Surface chemistry</subject><subject>Zinc</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0D1PwzAQBmALgUQpzExIllhY0tpx7PjGKnxKlbrAwhK5zqVNldoldpC69qfySwgqExPT6XSPXuleQq45m3CeqmmwDTqLE2NaIXNxQkacgUwgZeKUjBgTKtEsl-fkIoQNY8MNxIjcz2xsPpGGJmKgte9osfg6HOh6X3V-hc7ExjsaPd1iXBvnWzqsRT99dwtqTTTtPsRwSc5q0wa8-p1j8vb48Fo8J_PF00sxmyerNBUxMUoLaSznWmopamk0VpxLXlXCwDKzFcosq0Fx4MucMQ1LAKVRZahR6FyIMbk75u46_9FjiOW2CRbb1jj0fSi5BgFMAcA_qB5KS0Gygd7-oRvfd2545KjyVOufwJuj2oTou3LXNVvT7cs0Az7UysU3-stzGA</recordid><startdate>20170324</startdate><enddate>20170324</enddate><creator>Kattel, Shyam</creator><creator>Ramírez, Pedro J.</creator><creator>Chen, Jingguang G.</creator><creator>Rodriguez, José A.</creator><creator>Liu, Ping</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170324</creationdate><title>Active sites for CO₂ hydrogenation to methanol on Cu/ZnO catalysts</title><author>Kattel, Shyam ; Ramírez, Pedro J. ; Chen, Jingguang G. ; Rodriguez, José A. ; Liu, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g223t-a6835ac1185853f5a8ed1151dd3a9b4cde544f96191b70089b9968e64e8e38733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Hydrogenation</topic><topic>Industrial production</topic><topic>Intermediates</topic><topic>Methanol</topic><topic>Methyl alcohol</topic><topic>Monte Carlo simulation</topic><topic>Oxidation</topic><topic>Photoelectric emission</topic><topic>Photoelectron spectroscopy</topic><topic>Spectroscopy</topic><topic>Surface chemistry</topic><topic>Zinc</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kattel, Shyam</creatorcontrib><creatorcontrib>Ramírez, Pedro J.</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><creatorcontrib>Rodriguez, José A.</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kattel, Shyam</au><au>Ramírez, Pedro J.</au><au>Chen, Jingguang G.</au><au>Rodriguez, José A.</au><au>Liu, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active sites for CO₂ hydrogenation to methanol on Cu/ZnO catalysts</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2017-03-24</date><risdate>2017</risdate><volume>355</volume><issue>6331</issue><spage>1296</spage><epage>1299</epage><pages>1296-1299</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The active sites over commercial copper/zinc oxide/aluminum oxide (Cu/ZnO/Al₂O₃) catalysts for carbon dioxide (CO₂) hydrogenation to methanol, the Zn-Cu bimetallic sites or ZnO-Cu interfacial sites, have recently been the subject of intense debate. We report a direct comparison between the activity of ZnCu and ZnO/Cu model catalysts for methanol synthesis. By combining x-ray photoemission spectroscopy, density functional theory, and kinetic Monte Carlo simulations, we can identify and characterize the reactivity of each catalyst. Both experimental and theoretical results agree that ZnCu undergoes surface oxidation under the reaction conditions so that surface Zn transforms into ZnO and allows ZnCu to reach the activity of ZnO/Cu with the same Zn coverage. Our results highlight a synergy of Cu and ZnO at the interface that facilitates methanol synthesis via formate intermediates.</abstract><cop>Washington</cop><pub>American Association for the Advancement of Science</pub><doi>10.1126/science.aal3573</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-03, Vol.355 (6331), p.1296-1299
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1893906999
source Science Online_科学在线; JSTOR
subjects Aluminum
Aluminum oxide
Bimetals
Carbon dioxide
Catalysis
Catalysts
Chemical synthesis
Computer simulation
Copper
Density functional theory
Hydrogenation
Industrial production
Intermediates
Methanol
Methyl alcohol
Monte Carlo simulation
Oxidation
Photoelectric emission
Photoelectron spectroscopy
Spectroscopy
Surface chemistry
Zinc
Zinc oxide
Zinc oxides
title Active sites for CO₂ hydrogenation to methanol on Cu/ZnO catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20sites%20for%20CO%E2%82%82%20hydrogenation%20to%20methanol%20on%20Cu/ZnO%20catalysts&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Kattel,%20Shyam&rft.date=2017-03-24&rft.volume=355&rft.issue=6331&rft.spage=1296&rft.epage=1299&rft.pages=1296-1299&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aal3573&rft_dat=%3Cjstor_proqu%3E24918071%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881272889&rft_id=info:pmid/&rft_jstor_id=24918071&rfr_iscdi=true