Pattern recognition in multilinear space and its applications: mathematics, computational algorithms and numerical validations
We clarify the mathematical equivalence between low-dimensional singular value decomposition and low-order tensor principal component analysis for two- and three-dimensional images. Furthermore, we show that the two- and three-dimensional discrete cosine transforms are, respectively, acceptable appr...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2016-11, Vol.27 (8), p.1259-1273 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We clarify the mathematical equivalence between low-dimensional singular value decomposition and low-order tensor principal component analysis for two- and three-dimensional images. Furthermore, we show that the two- and three-dimensional discrete cosine transforms are, respectively, acceptable approximations to two- and three-dimensional singular value decomposition and classical principal component analysis. Moreover, for the practical computation in two-dimensional singular value decomposition, we introduce the marginal eigenvector method, which was proposed for image compression. For three-dimensional singular value decomposition, we also show an iterative algorithm. To evaluate the performances of the marginal eigenvector method and two-dimensional discrete cosine transform for dimension reduction, we compute recognition rates for six datasets of two-dimensional image patterns. To evaluate the performances of the iterative algorithm and three-dimensional discrete cosine transform for dimension reduction, we compute recognition rates for datasets of gait patterns and human organs. For two- and three-dimensional images, the two- and three-dimensional discrete cosine transforms give almost the same recognition rates as the marginal eigenvector method and iterative algorithm, respectively. |
---|---|
ISSN: | 0932-8092 1432-1769 |
DOI: | 10.1007/s00138-016-0806-2 |