Layer-specific modulation of neocortical dendritic inhibition during active wakefulness

γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label soma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-03, Vol.355 (6328), p.954-959
Hauptverfasser: Muñoz, William, Tremblay, Robin, Levenstein, Daniel, Rudy, Bernardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 6328
container_start_page 954
container_title Science (American Association for the Advancement of Science)
container_volume 355
creator Muñoz, William
Tremblay, Robin
Levenstein, Daniel
Rudy, Bernardo
description γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label somatostatin-expressing (Sst) interneurons (GABAergic neurons specialized for dendritic inhibition), we discovered a layer-specific modulation of their activity in behaving mice. Sst interneuron subtypes, residing in different cortical layers and innervating complementary laminar domains, exhibited opposite activity changes during transitions to active wakefulness. The relative weight of vasoactive intestinal peptide–expressing (Vip) interneuron–mediated inhibition of distinct Sst interneurons and cholinergic modulation determined their in vivo activity. These results reveal a state-dependent laminar influence of Sst interneuron–mediated inhibition, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.
doi_str_mv 10.1126/science.aag2599
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893903418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918454</jstor_id><sourcerecordid>24918454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-d9b043294e5fe56752925bd6838c7624798666df4d5e17efad2534ffb548718b3</originalsourceid><addsrcrecordid>eNqN0btrHDEQB2BhEuzzo06VsJDGzdp6jLRSGUxecJAmweWilUaOLnuri7Tr4P8-iu-SgCtXI5hPwww_Ql4xesUYV9fFRZwcXll7x6UxR2TFqJGt4VS8ICtKhWo17eQJOS1lQ2ntGXFMTrjmEgzwFbld2wfMbdmhiyG6Zpv8Mto5pqlJoZkwuZTn6OzYeJx8jvXdxOl7HOKj8UuO011j3Rzvsfllf2BYxglLOScvgx0LXhzqGfn24f3Xm0_t-svHzzfv1q0Dw-fWm4GC4AZQBpSqk9xwOXilhXad4tAZrZTyAbxE1mGwnksBIQwSdMf0IM7I5X7uLqefC5a538bicBxt3X0pPdNGGCqA6WfQDgCY6qDSt0_oJi15qodUpYEazamq6nqvXE6lZAz9LsetzQ89o_2fePpDPP0hnvrjzWHuMmzR__N_86jg9R5sypzy_z4YpkGC-A0mcJbj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884098206</pqid></control><display><type>article</type><title>Layer-specific modulation of neocortical dendritic inhibition during active wakefulness</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Muñoz, William ; Tremblay, Robin ; Levenstein, Daniel ; Rudy, Bernardo</creator><creatorcontrib>Muñoz, William ; Tremblay, Robin ; Levenstein, Daniel ; Rudy, Bernardo</creatorcontrib><description>γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label somatostatin-expressing (Sst) interneurons (GABAergic neurons specialized for dendritic inhibition), we discovered a layer-specific modulation of their activity in behaving mice. Sst interneuron subtypes, residing in different cortical layers and innervating complementary laminar domains, exhibited opposite activity changes during transitions to active wakefulness. The relative weight of vasoactive intestinal peptide–expressing (Vip) interneuron–mediated inhibition of distinct Sst interneurons and cholinergic modulation determined their in vivo activity. These results reveal a state-dependent laminar influence of Sst interneuron–mediated inhibition, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aag2599</identifier><identifier>PMID: 28254942</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Acetylcholine - metabolism ; Animals ; Attention ; Behavior ; Brain ; Dendrites ; Dendrites - physiology ; Dendritic cells ; Dendritic structure ; Female ; GABAergic Neurons - metabolism ; GABAergic Neurons - physiology ; gamma-Aminobutyric Acid - metabolism ; In vivo methods and tests ; Inhibition ; Interneurons - metabolism ; Interneurons - physiology ; Laminar wakes ; Male ; Mice ; Mice, Knockout ; Modulation ; Neocortex - cytology ; Neocortex - physiology ; Neural Inhibition ; Neurons ; Patching ; Pyramidal Cells - physiology ; Receptors, Muscarinic - metabolism ; Recording ; Rodents ; Somatostatin - metabolism ; Vasoactive Intestinal Peptide - metabolism ; Wakefulness ; Wakefulness - physiology ; γ-Aminobutyric acid receptors</subject><ispartof>Science (American Association for the Advancement of Science), 2017-03, Vol.355 (6328), p.954-959</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-d9b043294e5fe56752925bd6838c7624798666df4d5e17efad2534ffb548718b3</citedby><cites>FETCH-LOGICAL-c492t-d9b043294e5fe56752925bd6838c7624798666df4d5e17efad2534ffb548718b3</cites><orcidid>0000-0002-5507-9145 ; 0000-0003-3434-1201 ; 0000-0003-1367-7136 ; 0000-0002-1354-3472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918454$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918454$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28254942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz, William</creatorcontrib><creatorcontrib>Tremblay, Robin</creatorcontrib><creatorcontrib>Levenstein, Daniel</creatorcontrib><creatorcontrib>Rudy, Bernardo</creatorcontrib><title>Layer-specific modulation of neocortical dendritic inhibition during active wakefulness</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label somatostatin-expressing (Sst) interneurons (GABAergic neurons specialized for dendritic inhibition), we discovered a layer-specific modulation of their activity in behaving mice. Sst interneuron subtypes, residing in different cortical layers and innervating complementary laminar domains, exhibited opposite activity changes during transitions to active wakefulness. The relative weight of vasoactive intestinal peptide–expressing (Vip) interneuron–mediated inhibition of distinct Sst interneurons and cholinergic modulation determined their in vivo activity. These results reveal a state-dependent laminar influence of Sst interneuron–mediated inhibition, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.</description><subject>Acetylcholine - metabolism</subject><subject>Animals</subject><subject>Attention</subject><subject>Behavior</subject><subject>Brain</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Dendritic cells</subject><subject>Dendritic structure</subject><subject>Female</subject><subject>GABAergic Neurons - metabolism</subject><subject>GABAergic Neurons - physiology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>In vivo methods and tests</subject><subject>Inhibition</subject><subject>Interneurons - metabolism</subject><subject>Interneurons - physiology</subject><subject>Laminar wakes</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Modulation</subject><subject>Neocortex - cytology</subject><subject>Neocortex - physiology</subject><subject>Neural Inhibition</subject><subject>Neurons</subject><subject>Patching</subject><subject>Pyramidal Cells - physiology</subject><subject>Receptors, Muscarinic - metabolism</subject><subject>Recording</subject><subject>Rodents</subject><subject>Somatostatin - metabolism</subject><subject>Vasoactive Intestinal Peptide - metabolism</subject><subject>Wakefulness</subject><subject>Wakefulness - physiology</subject><subject>γ-Aminobutyric acid receptors</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0btrHDEQB2BhEuzzo06VsJDGzdp6jLRSGUxecJAmweWilUaOLnuri7Tr4P8-iu-SgCtXI5hPwww_Ql4xesUYV9fFRZwcXll7x6UxR2TFqJGt4VS8ICtKhWo17eQJOS1lQ2ntGXFMTrjmEgzwFbld2wfMbdmhiyG6Zpv8Mto5pqlJoZkwuZTn6OzYeJx8jvXdxOl7HOKj8UuO011j3Rzvsfllf2BYxglLOScvgx0LXhzqGfn24f3Xm0_t-svHzzfv1q0Dw-fWm4GC4AZQBpSqk9xwOXilhXad4tAZrZTyAbxE1mGwnksBIQwSdMf0IM7I5X7uLqefC5a538bicBxt3X0pPdNGGCqA6WfQDgCY6qDSt0_oJi15qodUpYEazamq6nqvXE6lZAz9LsetzQ89o_2fePpDPP0hnvrjzWHuMmzR__N_86jg9R5sypzy_z4YpkGC-A0mcJbj</recordid><startdate>20170303</startdate><enddate>20170303</enddate><creator>Muñoz, William</creator><creator>Tremblay, Robin</creator><creator>Levenstein, Daniel</creator><creator>Rudy, Bernardo</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5507-9145</orcidid><orcidid>https://orcid.org/0000-0003-3434-1201</orcidid><orcidid>https://orcid.org/0000-0003-1367-7136</orcidid><orcidid>https://orcid.org/0000-0002-1354-3472</orcidid></search><sort><creationdate>20170303</creationdate><title>Layer-specific modulation of neocortical dendritic inhibition during active wakefulness</title><author>Muñoz, William ; Tremblay, Robin ; Levenstein, Daniel ; Rudy, Bernardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-d9b043294e5fe56752925bd6838c7624798666df4d5e17efad2534ffb548718b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetylcholine - metabolism</topic><topic>Animals</topic><topic>Attention</topic><topic>Behavior</topic><topic>Brain</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Dendritic cells</topic><topic>Dendritic structure</topic><topic>Female</topic><topic>GABAergic Neurons - metabolism</topic><topic>GABAergic Neurons - physiology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>In vivo methods and tests</topic><topic>Inhibition</topic><topic>Interneurons - metabolism</topic><topic>Interneurons - physiology</topic><topic>Laminar wakes</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Modulation</topic><topic>Neocortex - cytology</topic><topic>Neocortex - physiology</topic><topic>Neural Inhibition</topic><topic>Neurons</topic><topic>Patching</topic><topic>Pyramidal Cells - physiology</topic><topic>Receptors, Muscarinic - metabolism</topic><topic>Recording</topic><topic>Rodents</topic><topic>Somatostatin - metabolism</topic><topic>Vasoactive Intestinal Peptide - metabolism</topic><topic>Wakefulness</topic><topic>Wakefulness - physiology</topic><topic>γ-Aminobutyric acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz, William</creatorcontrib><creatorcontrib>Tremblay, Robin</creatorcontrib><creatorcontrib>Levenstein, Daniel</creatorcontrib><creatorcontrib>Rudy, Bernardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz, William</au><au>Tremblay, Robin</au><au>Levenstein, Daniel</au><au>Rudy, Bernardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layer-specific modulation of neocortical dendritic inhibition during active wakefulness</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-03-03</date><risdate>2017</risdate><volume>355</volume><issue>6328</issue><spage>954</spage><epage>959</epage><pages>954-959</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><abstract>γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label somatostatin-expressing (Sst) interneurons (GABAergic neurons specialized for dendritic inhibition), we discovered a layer-specific modulation of their activity in behaving mice. Sst interneuron subtypes, residing in different cortical layers and innervating complementary laminar domains, exhibited opposite activity changes during transitions to active wakefulness. The relative weight of vasoactive intestinal peptide–expressing (Vip) interneuron–mediated inhibition of distinct Sst interneurons and cholinergic modulation determined their in vivo activity. These results reveal a state-dependent laminar influence of Sst interneuron–mediated inhibition, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28254942</pmid><doi>10.1126/science.aag2599</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5507-9145</orcidid><orcidid>https://orcid.org/0000-0003-3434-1201</orcidid><orcidid>https://orcid.org/0000-0003-1367-7136</orcidid><orcidid>https://orcid.org/0000-0002-1354-3472</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-03, Vol.355 (6328), p.954-959
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1893903418
source Jstor Complete Legacy; MEDLINE; Science Magazine
subjects Acetylcholine - metabolism
Animals
Attention
Behavior
Brain
Dendrites
Dendrites - physiology
Dendritic cells
Dendritic structure
Female
GABAergic Neurons - metabolism
GABAergic Neurons - physiology
gamma-Aminobutyric Acid - metabolism
In vivo methods and tests
Inhibition
Interneurons - metabolism
Interneurons - physiology
Laminar wakes
Male
Mice
Mice, Knockout
Modulation
Neocortex - cytology
Neocortex - physiology
Neural Inhibition
Neurons
Patching
Pyramidal Cells - physiology
Receptors, Muscarinic - metabolism
Recording
Rodents
Somatostatin - metabolism
Vasoactive Intestinal Peptide - metabolism
Wakefulness
Wakefulness - physiology
γ-Aminobutyric acid receptors
title Layer-specific modulation of neocortical dendritic inhibition during active wakefulness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layer-specific%20modulation%20of%20neocortical%20dendritic%20inhibition%20during%20active%20wakefulness&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Mu%C3%B1oz,%20William&rft.date=2017-03-03&rft.volume=355&rft.issue=6328&rft.spage=954&rft.epage=959&rft.pages=954-959&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aag2599&rft_dat=%3Cjstor_proqu%3E24918454%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884098206&rft_id=info:pmid/28254942&rft_jstor_id=24918454&rfr_iscdi=true