Demonstration of an ac Josephson junction laser
Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-03, Vol.355 (6328), p.939-942 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 942 |
---|---|
container_issue | 6328 |
container_start_page | 939 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 355 |
creator | Cassidy, M. C. Bruno, A. Rubbert, S. Irfan, M. Kammhuber, J. Schouten, R. N. Akhmerov, A. R. Kouwenhoven, L. P. |
description | Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures. |
doi_str_mv | 10.1126/science.aah6640 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893902869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918450</jstor_id><sourcerecordid>24918450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513</originalsourceid><addsrcrecordid>eNqN0M1LwzAYBvAgipvTsydl4MVLtzdfXXKU-c3Ai55Llr5lLW0zk_bgf2_mqoInQyCQ55cX8hByTmFGKUvnwZbYWpwZs0lTAQdkTEHLRDPgh2QMwNNEwUKOyEkIFUDMND8mI6aYFJqrMZnfYuPa0HnTla6dumJq2qmx02cXcLsJ8arqW_uV1SagPyVHhakDng3nhLzd370uH5PVy8PT8maVWCHSLtF8jQa0yTVCQcFqqbRFFIpxtTCaGokCpLQQtwAUWuZrpot8UeRAuaR8Qq73c7fevfcYuqwpg8W6Ni26PmRUaa6BqVT_gy6EEJRRFunVH1q53rfxIzsluYpLRjXfK-tdCB6LbOvLxviPjEK2qz0bas-G2uOLy2Fuv24w__HfPUdwsQdV6Jz_zYWmSkjgn7AUh0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875388885</pqid></control><display><type>article</type><title>Demonstration of an ac Josephson junction laser</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Cassidy, M. C. ; Bruno, A. ; Rubbert, S. ; Irfan, M. ; Kammhuber, J. ; Schouten, R. N. ; Akhmerov, A. R. ; Kouwenhoven, L. P.</creator><creatorcontrib>Cassidy, M. C. ; Bruno, A. ; Rubbert, S. ; Irfan, M. ; Kammhuber, J. ; Schouten, R. N. ; Akhmerov, A. R. ; Kouwenhoven, L. P.</creatorcontrib><description>Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aah6640</identifier><identifier>PMID: 28254938</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Active control ; Circuits ; Coherence ; Dissipation ; Electronic devices ; Electronic equipment ; Holes ; Integration ; Josephson effect ; Josephson junctions ; Lasers ; Lasing ; Microwave radiation ; Microwaves ; Nonlinear systems ; Nonlinearity ; Photons ; Quantum computing ; Quantum theory ; Superconductivity</subject><ispartof>Science (American Association for the Advancement of Science), 2017-03, Vol.355 (6328), p.939-942</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513</citedby><cites>FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513</cites><orcidid>0000-0002-7780-1549 ; 0000-0001-8031-1340 ; 0000-0001-6476-0736 ; 0000-0002-2924-8451 ; 0000-0003-4118-5120 ; 0000-0003-4467-9361 ; 0000-0002-7821-5082 ; 0000-0002-7046-8181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918450$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918450$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28254938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cassidy, M. C.</creatorcontrib><creatorcontrib>Bruno, A.</creatorcontrib><creatorcontrib>Rubbert, S.</creatorcontrib><creatorcontrib>Irfan, M.</creatorcontrib><creatorcontrib>Kammhuber, J.</creatorcontrib><creatorcontrib>Schouten, R. N.</creatorcontrib><creatorcontrib>Akhmerov, A. R.</creatorcontrib><creatorcontrib>Kouwenhoven, L. P.</creatorcontrib><title>Demonstration of an ac Josephson junction laser</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.</description><subject>Active control</subject><subject>Circuits</subject><subject>Coherence</subject><subject>Dissipation</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Holes</subject><subject>Integration</subject><subject>Josephson effect</subject><subject>Josephson junctions</subject><subject>Lasers</subject><subject>Lasing</subject><subject>Microwave radiation</subject><subject>Microwaves</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Photons</subject><subject>Quantum computing</subject><subject>Quantum theory</subject><subject>Superconductivity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0M1LwzAYBvAgipvTsydl4MVLtzdfXXKU-c3Ai55Llr5lLW0zk_bgf2_mqoInQyCQ55cX8hByTmFGKUvnwZbYWpwZs0lTAQdkTEHLRDPgh2QMwNNEwUKOyEkIFUDMND8mI6aYFJqrMZnfYuPa0HnTla6dumJq2qmx02cXcLsJ8arqW_uV1SagPyVHhakDng3nhLzd370uH5PVy8PT8maVWCHSLtF8jQa0yTVCQcFqqbRFFIpxtTCaGokCpLQQtwAUWuZrpot8UeRAuaR8Qq73c7fevfcYuqwpg8W6Ni26PmRUaa6BqVT_gy6EEJRRFunVH1q53rfxIzsluYpLRjXfK-tdCB6LbOvLxviPjEK2qz0bas-G2uOLy2Fuv24w__HfPUdwsQdV6Jz_zYWmSkjgn7AUh0I</recordid><startdate>20170303</startdate><enddate>20170303</enddate><creator>Cassidy, M. C.</creator><creator>Bruno, A.</creator><creator>Rubbert, S.</creator><creator>Irfan, M.</creator><creator>Kammhuber, J.</creator><creator>Schouten, R. N.</creator><creator>Akhmerov, A. R.</creator><creator>Kouwenhoven, L. P.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7780-1549</orcidid><orcidid>https://orcid.org/0000-0001-8031-1340</orcidid><orcidid>https://orcid.org/0000-0001-6476-0736</orcidid><orcidid>https://orcid.org/0000-0002-2924-8451</orcidid><orcidid>https://orcid.org/0000-0003-4118-5120</orcidid><orcidid>https://orcid.org/0000-0003-4467-9361</orcidid><orcidid>https://orcid.org/0000-0002-7821-5082</orcidid><orcidid>https://orcid.org/0000-0002-7046-8181</orcidid></search><sort><creationdate>20170303</creationdate><title>Demonstration of an ac Josephson junction laser</title><author>Cassidy, M. C. ; Bruno, A. ; Rubbert, S. ; Irfan, M. ; Kammhuber, J. ; Schouten, R. N. ; Akhmerov, A. R. ; Kouwenhoven, L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active control</topic><topic>Circuits</topic><topic>Coherence</topic><topic>Dissipation</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Holes</topic><topic>Integration</topic><topic>Josephson effect</topic><topic>Josephson junctions</topic><topic>Lasers</topic><topic>Lasing</topic><topic>Microwave radiation</topic><topic>Microwaves</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Photons</topic><topic>Quantum computing</topic><topic>Quantum theory</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassidy, M. C.</creatorcontrib><creatorcontrib>Bruno, A.</creatorcontrib><creatorcontrib>Rubbert, S.</creatorcontrib><creatorcontrib>Irfan, M.</creatorcontrib><creatorcontrib>Kammhuber, J.</creatorcontrib><creatorcontrib>Schouten, R. N.</creatorcontrib><creatorcontrib>Akhmerov, A. R.</creatorcontrib><creatorcontrib>Kouwenhoven, L. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassidy, M. C.</au><au>Bruno, A.</au><au>Rubbert, S.</au><au>Irfan, M.</au><au>Kammhuber, J.</au><au>Schouten, R. N.</au><au>Akhmerov, A. R.</au><au>Kouwenhoven, L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of an ac Josephson junction laser</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-03-03</date><risdate>2017</risdate><volume>355</volume><issue>6328</issue><spage>939</spage><epage>942</epage><pages>939-942</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28254938</pmid><doi>10.1126/science.aah6640</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7780-1549</orcidid><orcidid>https://orcid.org/0000-0001-8031-1340</orcidid><orcidid>https://orcid.org/0000-0001-6476-0736</orcidid><orcidid>https://orcid.org/0000-0002-2924-8451</orcidid><orcidid>https://orcid.org/0000-0003-4118-5120</orcidid><orcidid>https://orcid.org/0000-0003-4467-9361</orcidid><orcidid>https://orcid.org/0000-0002-7821-5082</orcidid><orcidid>https://orcid.org/0000-0002-7046-8181</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-03, Vol.355 (6328), p.939-942 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893902869 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Active control Circuits Coherence Dissipation Electronic devices Electronic equipment Holes Integration Josephson effect Josephson junctions Lasers Lasing Microwave radiation Microwaves Nonlinear systems Nonlinearity Photons Quantum computing Quantum theory Superconductivity |
title | Demonstration of an ac Josephson junction laser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20an%20ac%20Josephson%20junction%20laser&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cassidy,%20M.%20C.&rft.date=2017-03-03&rft.volume=355&rft.issue=6328&rft.spage=939&rft.epage=942&rft.pages=939-942&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aah6640&rft_dat=%3Cjstor_proqu%3E24918450%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875388885&rft_id=info:pmid/28254938&rft_jstor_id=24918450&rfr_iscdi=true |