Demonstration of an ac Josephson junction laser

Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-03, Vol.355 (6328), p.939-942
Hauptverfasser: Cassidy, M. C., Bruno, A., Rubbert, S., Irfan, M., Kammhuber, J., Schouten, R. N., Akhmerov, A. R., Kouwenhoven, L. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 942
container_issue 6328
container_start_page 939
container_title Science (American Association for the Advancement of Science)
container_volume 355
creator Cassidy, M. C.
Bruno, A.
Rubbert, S.
Irfan, M.
Kammhuber, J.
Schouten, R. N.
Akhmerov, A. R.
Kouwenhoven, L. P.
description Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
doi_str_mv 10.1126/science.aah6640
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893902869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918450</jstor_id><sourcerecordid>24918450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513</originalsourceid><addsrcrecordid>eNqN0M1LwzAYBvAgipvTsydl4MVLtzdfXXKU-c3Ai55Llr5lLW0zk_bgf2_mqoInQyCQ55cX8hByTmFGKUvnwZbYWpwZs0lTAQdkTEHLRDPgh2QMwNNEwUKOyEkIFUDMND8mI6aYFJqrMZnfYuPa0HnTla6dumJq2qmx02cXcLsJ8arqW_uV1SagPyVHhakDng3nhLzd370uH5PVy8PT8maVWCHSLtF8jQa0yTVCQcFqqbRFFIpxtTCaGokCpLQQtwAUWuZrpot8UeRAuaR8Qq73c7fevfcYuqwpg8W6Ni26PmRUaa6BqVT_gy6EEJRRFunVH1q53rfxIzsluYpLRjXfK-tdCB6LbOvLxviPjEK2qz0bas-G2uOLy2Fuv24w__HfPUdwsQdV6Jz_zYWmSkjgn7AUh0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875388885</pqid></control><display><type>article</type><title>Demonstration of an ac Josephson junction laser</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Cassidy, M. C. ; Bruno, A. ; Rubbert, S. ; Irfan, M. ; Kammhuber, J. ; Schouten, R. N. ; Akhmerov, A. R. ; Kouwenhoven, L. P.</creator><creatorcontrib>Cassidy, M. C. ; Bruno, A. ; Rubbert, S. ; Irfan, M. ; Kammhuber, J. ; Schouten, R. N. ; Akhmerov, A. R. ; Kouwenhoven, L. P.</creatorcontrib><description>Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aah6640</identifier><identifier>PMID: 28254938</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Active control ; Circuits ; Coherence ; Dissipation ; Electronic devices ; Electronic equipment ; Holes ; Integration ; Josephson effect ; Josephson junctions ; Lasers ; Lasing ; Microwave radiation ; Microwaves ; Nonlinear systems ; Nonlinearity ; Photons ; Quantum computing ; Quantum theory ; Superconductivity</subject><ispartof>Science (American Association for the Advancement of Science), 2017-03, Vol.355 (6328), p.939-942</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513</citedby><cites>FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513</cites><orcidid>0000-0002-7780-1549 ; 0000-0001-8031-1340 ; 0000-0001-6476-0736 ; 0000-0002-2924-8451 ; 0000-0003-4118-5120 ; 0000-0003-4467-9361 ; 0000-0002-7821-5082 ; 0000-0002-7046-8181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918450$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918450$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28254938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cassidy, M. C.</creatorcontrib><creatorcontrib>Bruno, A.</creatorcontrib><creatorcontrib>Rubbert, S.</creatorcontrib><creatorcontrib>Irfan, M.</creatorcontrib><creatorcontrib>Kammhuber, J.</creatorcontrib><creatorcontrib>Schouten, R. N.</creatorcontrib><creatorcontrib>Akhmerov, A. R.</creatorcontrib><creatorcontrib>Kouwenhoven, L. P.</creatorcontrib><title>Demonstration of an ac Josephson junction laser</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.</description><subject>Active control</subject><subject>Circuits</subject><subject>Coherence</subject><subject>Dissipation</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Holes</subject><subject>Integration</subject><subject>Josephson effect</subject><subject>Josephson junctions</subject><subject>Lasers</subject><subject>Lasing</subject><subject>Microwave radiation</subject><subject>Microwaves</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Photons</subject><subject>Quantum computing</subject><subject>Quantum theory</subject><subject>Superconductivity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0M1LwzAYBvAgipvTsydl4MVLtzdfXXKU-c3Ai55Llr5lLW0zk_bgf2_mqoInQyCQ55cX8hByTmFGKUvnwZbYWpwZs0lTAQdkTEHLRDPgh2QMwNNEwUKOyEkIFUDMND8mI6aYFJqrMZnfYuPa0HnTla6dumJq2qmx02cXcLsJ8arqW_uV1SagPyVHhakDng3nhLzd370uH5PVy8PT8maVWCHSLtF8jQa0yTVCQcFqqbRFFIpxtTCaGokCpLQQtwAUWuZrpot8UeRAuaR8Qq73c7fevfcYuqwpg8W6Ni26PmRUaa6BqVT_gy6EEJRRFunVH1q53rfxIzsluYpLRjXfK-tdCB6LbOvLxviPjEK2qz0bas-G2uOLy2Fuv24w__HfPUdwsQdV6Jz_zYWmSkjgn7AUh0I</recordid><startdate>20170303</startdate><enddate>20170303</enddate><creator>Cassidy, M. C.</creator><creator>Bruno, A.</creator><creator>Rubbert, S.</creator><creator>Irfan, M.</creator><creator>Kammhuber, J.</creator><creator>Schouten, R. N.</creator><creator>Akhmerov, A. R.</creator><creator>Kouwenhoven, L. P.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7780-1549</orcidid><orcidid>https://orcid.org/0000-0001-8031-1340</orcidid><orcidid>https://orcid.org/0000-0001-6476-0736</orcidid><orcidid>https://orcid.org/0000-0002-2924-8451</orcidid><orcidid>https://orcid.org/0000-0003-4118-5120</orcidid><orcidid>https://orcid.org/0000-0003-4467-9361</orcidid><orcidid>https://orcid.org/0000-0002-7821-5082</orcidid><orcidid>https://orcid.org/0000-0002-7046-8181</orcidid></search><sort><creationdate>20170303</creationdate><title>Demonstration of an ac Josephson junction laser</title><author>Cassidy, M. C. ; Bruno, A. ; Rubbert, S. ; Irfan, M. ; Kammhuber, J. ; Schouten, R. N. ; Akhmerov, A. R. ; Kouwenhoven, L. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active control</topic><topic>Circuits</topic><topic>Coherence</topic><topic>Dissipation</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Holes</topic><topic>Integration</topic><topic>Josephson effect</topic><topic>Josephson junctions</topic><topic>Lasers</topic><topic>Lasing</topic><topic>Microwave radiation</topic><topic>Microwaves</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Photons</topic><topic>Quantum computing</topic><topic>Quantum theory</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassidy, M. C.</creatorcontrib><creatorcontrib>Bruno, A.</creatorcontrib><creatorcontrib>Rubbert, S.</creatorcontrib><creatorcontrib>Irfan, M.</creatorcontrib><creatorcontrib>Kammhuber, J.</creatorcontrib><creatorcontrib>Schouten, R. N.</creatorcontrib><creatorcontrib>Akhmerov, A. R.</creatorcontrib><creatorcontrib>Kouwenhoven, L. P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassidy, M. C.</au><au>Bruno, A.</au><au>Rubbert, S.</au><au>Irfan, M.</au><au>Kammhuber, J.</au><au>Schouten, R. N.</au><au>Akhmerov, A. R.</au><au>Kouwenhoven, L. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of an ac Josephson junction laser</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-03-03</date><risdate>2017</risdate><volume>355</volume><issue>6328</issue><spage>939</spage><epage>942</epage><pages>939-942</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28254938</pmid><doi>10.1126/science.aah6640</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7780-1549</orcidid><orcidid>https://orcid.org/0000-0001-8031-1340</orcidid><orcidid>https://orcid.org/0000-0001-6476-0736</orcidid><orcidid>https://orcid.org/0000-0002-2924-8451</orcidid><orcidid>https://orcid.org/0000-0003-4118-5120</orcidid><orcidid>https://orcid.org/0000-0003-4467-9361</orcidid><orcidid>https://orcid.org/0000-0002-7821-5082</orcidid><orcidid>https://orcid.org/0000-0002-7046-8181</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-03, Vol.355 (6328), p.939-942
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1893902869
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Active control
Circuits
Coherence
Dissipation
Electronic devices
Electronic equipment
Holes
Integration
Josephson effect
Josephson junctions
Lasers
Lasing
Microwave radiation
Microwaves
Nonlinear systems
Nonlinearity
Photons
Quantum computing
Quantum theory
Superconductivity
title Demonstration of an ac Josephson junction laser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%20an%20ac%20Josephson%20junction%20laser&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cassidy,%20M.%20C.&rft.date=2017-03-03&rft.volume=355&rft.issue=6328&rft.spage=939&rft.epage=942&rft.pages=939-942&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aah6640&rft_dat=%3Cjstor_proqu%3E24918450%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875388885&rft_id=info:pmid/28254938&rft_jstor_id=24918450&rfr_iscdi=true