A high‐resolution model of the external and induced magnetic field at the Earth's surface in the Northern Hemisphere

We describe a method of producing high‐resolution models of the Earth's combined external and induced magnetic field using the method of empirical orthogonal functions (EOFs) applied to the SuperMAG archive of ground‐based magnetometer data. EOFs partition the variance of a system into independ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2017-02, Vol.122 (2), p.2440-2454
Hauptverfasser: Shore, R. M., Freeman, M. P., Wild, J. A., Gjerloev, J. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2454
container_issue 2
container_start_page 2440
container_title Journal of geophysical research. Space physics
container_volume 122
creator Shore, R. M.
Freeman, M. P.
Wild, J. A.
Gjerloev, J. W.
description We describe a method of producing high‐resolution models of the Earth's combined external and induced magnetic field using the method of empirical orthogonal functions (EOFs) applied to the SuperMAG archive of ground‐based magnetometer data. EOFs partition the variance of a system into independent modes, allowing us to extract the spatiotemporal patterns of greatest dynamical importance without applying the a priori assumptions of other methods (such as spherical harmonic analysis, parameterized averaging, or multivariate regression). We develop an approach based on that of Beckers and Rixen (2003) and use the EOF modes to infill missing data in a self‐consistent manner. Applying our method to a north polar case study spanning February 2001 (chosen for its proximity to solar maximum and good data coverage), we demonstrate that 41.7% and 9.4% of variance is explained by the leading two modes, respectively, describing the temporal variations of the disturbance polar types 2 and 1 (DP2 and DP1) patterns. A further 14.1% of variance is explained by four modes that describe separate aspects of the motion of the DP1 and DP2 systems. Thus, collectively over 65% of variance is described by the leading six modes and is attributable to DP1 and DP2. This attribution is based on inspection of the spatial morphology of the modes and analysis of the temporal variation of the mode amplitudes with respect to solar wind measures and substorm occurrence. This study is primarily a demonstration of the technique and a prelude to a model spanning the full solar cycle. Key Points Disturbance polar equivalent currents types 1 and 2 (DP1 and DP2) resolved at 5 min cadence in all LT sectors and all polar latitudes via EOF DP1 and DP2 shown to collectively account for 65% of the total external and induced magnetic field variance in the polar region Data predictions based on the EOF reanalysis were used to derive time series of the polar cap radius in two local time sectors
doi_str_mv 10.1002/2016JA023682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893901552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893901552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4392-78574c7399361622f789fec288c5e4cd9b1ef9a7bf6ca280251c35cce7c74cbf3</originalsourceid><addsrcrecordid>eNqN0ctKAzEUBuBBFBR15wMEXOjCai6T27KU2iqiILoe0syJHZlOajKjducj-Iw-iWmrIC7EbHL4-XIScrLsgOBTgjE9o5iIyz6mTCi6ke1QInRP55huftdM4e1sP8ZHnJZKEeE72XMfTauH6cfbe4Do666tfINmvoQaeYfaKSB4bSE0pkamKVHVlJ2FEs3MQwNtZZGroC6RaVd0aEI7PYoodsEZC0mv4muf4tQDjWFWxXkqYS_bcqaOsP-172b358O7wbh3dTO6GPSvejZnmvak4jK3kmnNBBGUOqm0A0uVshxyW-oJAaeNnDhhDVWYcmIZtxakTecmju1mx-u-8-CfOohtkV5goa5NA76LBVGaaUw4p_-gikihCF3Sw1_00XfLP1o15FhKkfO_lVRYpFtVUidrZYOPMYAr5qGambAoCC6Wgy1-DjZxtuYvVQ2LP21xObrtc0Y1ZZ_TYqMX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878065528</pqid></control><display><type>article</type><title>A high‐resolution model of the external and induced magnetic field at the Earth's surface in the Northern Hemisphere</title><source>Wiley-Blackwell Journals</source><source>Wiley Online Library Free Content</source><creator>Shore, R. M. ; Freeman, M. P. ; Wild, J. A. ; Gjerloev, J. W.</creator><creatorcontrib>Shore, R. M. ; Freeman, M. P. ; Wild, J. A. ; Gjerloev, J. W.</creatorcontrib><description>We describe a method of producing high‐resolution models of the Earth's combined external and induced magnetic field using the method of empirical orthogonal functions (EOFs) applied to the SuperMAG archive of ground‐based magnetometer data. EOFs partition the variance of a system into independent modes, allowing us to extract the spatiotemporal patterns of greatest dynamical importance without applying the a priori assumptions of other methods (such as spherical harmonic analysis, parameterized averaging, or multivariate regression). We develop an approach based on that of Beckers and Rixen (2003) and use the EOF modes to infill missing data in a self‐consistent manner. Applying our method to a north polar case study spanning February 2001 (chosen for its proximity to solar maximum and good data coverage), we demonstrate that 41.7% and 9.4% of variance is explained by the leading two modes, respectively, describing the temporal variations of the disturbance polar types 2 and 1 (DP2 and DP1) patterns. A further 14.1% of variance is explained by four modes that describe separate aspects of the motion of the DP1 and DP2 systems. Thus, collectively over 65% of variance is described by the leading six modes and is attributable to DP1 and DP2. This attribution is based on inspection of the spatial morphology of the modes and analysis of the temporal variation of the mode amplitudes with respect to solar wind measures and substorm occurrence. This study is primarily a demonstration of the technique and a prelude to a model spanning the full solar cycle. Key Points Disturbance polar equivalent currents types 1 and 2 (DP1 and DP2) resolved at 5 min cadence in all LT sectors and all polar latitudes via EOF DP1 and DP2 shown to collectively account for 65% of the total external and induced magnetic field variance in the polar region Data predictions based on the EOF reanalysis were used to derive time series of the polar cap radius in two local time sectors</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2016JA023682</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>decomposition of variability ; disturbance polar equivalent current systems ; Disturbances ; Dynamical systems ; Earth science ; Earth surface ; Empirical analysis ; empirical orthogonal functions ; external magnetic field ; Fourier analysis ; Geophysical data ; Geophysics ; Harmonic analysis ; High resolution ; Inspection ; Magnetic fields ; Magnetism ; Mathematical models ; Mathematical morphology ; Missing data ; Northern Hemisphere ; Orthogonal functions ; Polar environments ; polar ionosphere ; Polar regions ; Redevelopment ; Regression analysis ; Solar cycle ; Solar cycles ; Solar maximum ; Solar wind ; Spherical harmonics ; Variance</subject><ispartof>Journal of geophysical research. Space physics, 2017-02, Vol.122 (2), p.2440-2454</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4392-78574c7399361622f789fec288c5e4cd9b1ef9a7bf6ca280251c35cce7c74cbf3</citedby><cites>FETCH-LOGICAL-c4392-78574c7399361622f789fec288c5e4cd9b1ef9a7bf6ca280251c35cce7c74cbf3</cites><orcidid>0000-0002-8386-1425 ; 0000-0002-8653-8279 ; 0000-0001-8025-8869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JA023682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JA023682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46388,46812</link.rule.ids></links><search><creatorcontrib>Shore, R. M.</creatorcontrib><creatorcontrib>Freeman, M. P.</creatorcontrib><creatorcontrib>Wild, J. A.</creatorcontrib><creatorcontrib>Gjerloev, J. W.</creatorcontrib><title>A high‐resolution model of the external and induced magnetic field at the Earth's surface in the Northern Hemisphere</title><title>Journal of geophysical research. Space physics</title><description>We describe a method of producing high‐resolution models of the Earth's combined external and induced magnetic field using the method of empirical orthogonal functions (EOFs) applied to the SuperMAG archive of ground‐based magnetometer data. EOFs partition the variance of a system into independent modes, allowing us to extract the spatiotemporal patterns of greatest dynamical importance without applying the a priori assumptions of other methods (such as spherical harmonic analysis, parameterized averaging, or multivariate regression). We develop an approach based on that of Beckers and Rixen (2003) and use the EOF modes to infill missing data in a self‐consistent manner. Applying our method to a north polar case study spanning February 2001 (chosen for its proximity to solar maximum and good data coverage), we demonstrate that 41.7% and 9.4% of variance is explained by the leading two modes, respectively, describing the temporal variations of the disturbance polar types 2 and 1 (DP2 and DP1) patterns. A further 14.1% of variance is explained by four modes that describe separate aspects of the motion of the DP1 and DP2 systems. Thus, collectively over 65% of variance is described by the leading six modes and is attributable to DP1 and DP2. This attribution is based on inspection of the spatial morphology of the modes and analysis of the temporal variation of the mode amplitudes with respect to solar wind measures and substorm occurrence. This study is primarily a demonstration of the technique and a prelude to a model spanning the full solar cycle. Key Points Disturbance polar equivalent currents types 1 and 2 (DP1 and DP2) resolved at 5 min cadence in all LT sectors and all polar latitudes via EOF DP1 and DP2 shown to collectively account for 65% of the total external and induced magnetic field variance in the polar region Data predictions based on the EOF reanalysis were used to derive time series of the polar cap radius in two local time sectors</description><subject>decomposition of variability</subject><subject>disturbance polar equivalent current systems</subject><subject>Disturbances</subject><subject>Dynamical systems</subject><subject>Earth science</subject><subject>Earth surface</subject><subject>Empirical analysis</subject><subject>empirical orthogonal functions</subject><subject>external magnetic field</subject><subject>Fourier analysis</subject><subject>Geophysical data</subject><subject>Geophysics</subject><subject>Harmonic analysis</subject><subject>High resolution</subject><subject>Inspection</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Mathematical morphology</subject><subject>Missing data</subject><subject>Northern Hemisphere</subject><subject>Orthogonal functions</subject><subject>Polar environments</subject><subject>polar ionosphere</subject><subject>Polar regions</subject><subject>Redevelopment</subject><subject>Regression analysis</subject><subject>Solar cycle</subject><subject>Solar cycles</subject><subject>Solar maximum</subject><subject>Solar wind</subject><subject>Spherical harmonics</subject><subject>Variance</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0ctKAzEUBuBBFBR15wMEXOjCai6T27KU2iqiILoe0syJHZlOajKjducj-Iw-iWmrIC7EbHL4-XIScrLsgOBTgjE9o5iIyz6mTCi6ke1QInRP55huftdM4e1sP8ZHnJZKEeE72XMfTauH6cfbe4Do666tfINmvoQaeYfaKSB4bSE0pkamKVHVlJ2FEs3MQwNtZZGroC6RaVd0aEI7PYoodsEZC0mv4muf4tQDjWFWxXkqYS_bcqaOsP-172b358O7wbh3dTO6GPSvejZnmvak4jK3kmnNBBGUOqm0A0uVshxyW-oJAaeNnDhhDVWYcmIZtxakTecmju1mx-u-8-CfOohtkV5goa5NA76LBVGaaUw4p_-gikihCF3Sw1_00XfLP1o15FhKkfO_lVRYpFtVUidrZYOPMYAr5qGambAoCC6Wgy1-DjZxtuYvVQ2LP21xObrtc0Y1ZZ_TYqMX</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Shore, R. M.</creator><creator>Freeman, M. P.</creator><creator>Wild, J. A.</creator><creator>Gjerloev, J. W.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8386-1425</orcidid><orcidid>https://orcid.org/0000-0002-8653-8279</orcidid><orcidid>https://orcid.org/0000-0001-8025-8869</orcidid></search><sort><creationdate>201702</creationdate><title>A high‐resolution model of the external and induced magnetic field at the Earth's surface in the Northern Hemisphere</title><author>Shore, R. M. ; Freeman, M. P. ; Wild, J. A. ; Gjerloev, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4392-78574c7399361622f789fec288c5e4cd9b1ef9a7bf6ca280251c35cce7c74cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>decomposition of variability</topic><topic>disturbance polar equivalent current systems</topic><topic>Disturbances</topic><topic>Dynamical systems</topic><topic>Earth science</topic><topic>Earth surface</topic><topic>Empirical analysis</topic><topic>empirical orthogonal functions</topic><topic>external magnetic field</topic><topic>Fourier analysis</topic><topic>Geophysical data</topic><topic>Geophysics</topic><topic>Harmonic analysis</topic><topic>High resolution</topic><topic>Inspection</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Mathematical morphology</topic><topic>Missing data</topic><topic>Northern Hemisphere</topic><topic>Orthogonal functions</topic><topic>Polar environments</topic><topic>polar ionosphere</topic><topic>Polar regions</topic><topic>Redevelopment</topic><topic>Regression analysis</topic><topic>Solar cycle</topic><topic>Solar cycles</topic><topic>Solar maximum</topic><topic>Solar wind</topic><topic>Spherical harmonics</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shore, R. M.</creatorcontrib><creatorcontrib>Freeman, M. P.</creatorcontrib><creatorcontrib>Wild, J. A.</creatorcontrib><creatorcontrib>Gjerloev, J. W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shore, R. M.</au><au>Freeman, M. P.</au><au>Wild, J. A.</au><au>Gjerloev, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high‐resolution model of the external and induced magnetic field at the Earth's surface in the Northern Hemisphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-02</date><risdate>2017</risdate><volume>122</volume><issue>2</issue><spage>2440</spage><epage>2454</epage><pages>2440-2454</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>We describe a method of producing high‐resolution models of the Earth's combined external and induced magnetic field using the method of empirical orthogonal functions (EOFs) applied to the SuperMAG archive of ground‐based magnetometer data. EOFs partition the variance of a system into independent modes, allowing us to extract the spatiotemporal patterns of greatest dynamical importance without applying the a priori assumptions of other methods (such as spherical harmonic analysis, parameterized averaging, or multivariate regression). We develop an approach based on that of Beckers and Rixen (2003) and use the EOF modes to infill missing data in a self‐consistent manner. Applying our method to a north polar case study spanning February 2001 (chosen for its proximity to solar maximum and good data coverage), we demonstrate that 41.7% and 9.4% of variance is explained by the leading two modes, respectively, describing the temporal variations of the disturbance polar types 2 and 1 (DP2 and DP1) patterns. A further 14.1% of variance is explained by four modes that describe separate aspects of the motion of the DP1 and DP2 systems. Thus, collectively over 65% of variance is described by the leading six modes and is attributable to DP1 and DP2. This attribution is based on inspection of the spatial morphology of the modes and analysis of the temporal variation of the mode amplitudes with respect to solar wind measures and substorm occurrence. This study is primarily a demonstration of the technique and a prelude to a model spanning the full solar cycle. Key Points Disturbance polar equivalent currents types 1 and 2 (DP1 and DP2) resolved at 5 min cadence in all LT sectors and all polar latitudes via EOF DP1 and DP2 shown to collectively account for 65% of the total external and induced magnetic field variance in the polar region Data predictions based on the EOF reanalysis were used to derive time series of the polar cap radius in two local time sectors</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JA023682</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8386-1425</orcidid><orcidid>https://orcid.org/0000-0002-8653-8279</orcidid><orcidid>https://orcid.org/0000-0001-8025-8869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2017-02, Vol.122 (2), p.2440-2454
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_miscellaneous_1893901552
source Wiley-Blackwell Journals; Wiley Online Library Free Content
subjects decomposition of variability
disturbance polar equivalent current systems
Disturbances
Dynamical systems
Earth science
Earth surface
Empirical analysis
empirical orthogonal functions
external magnetic field
Fourier analysis
Geophysical data
Geophysics
Harmonic analysis
High resolution
Inspection
Magnetic fields
Magnetism
Mathematical models
Mathematical morphology
Missing data
Northern Hemisphere
Orthogonal functions
Polar environments
polar ionosphere
Polar regions
Redevelopment
Regression analysis
Solar cycle
Solar cycles
Solar maximum
Solar wind
Spherical harmonics
Variance
title A high‐resolution model of the external and induced magnetic field at the Earth's surface in the Northern Hemisphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%E2%80%90resolution%20model%20of%20the%20external%20and%20induced%20magnetic%20field%20at%20the%20Earth's%20surface%20in%20the%20Northern%20Hemisphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Shore,%20R.%20M.&rft.date=2017-02&rft.volume=122&rft.issue=2&rft.spage=2440&rft.epage=2454&rft.pages=2440-2454&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2016JA023682&rft_dat=%3Cproquest_cross%3E1893901552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878065528&rft_id=info:pmid/&rfr_iscdi=true