A Riemannian conjugate gradient method for optimization on the Stiefel manifold
In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2017-05, Vol.67 (1), p.73-110 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | Computational optimization and applications |
container_volume | 67 |
creator | Zhu, Xiaojing |
description | In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental for convergence analysis of Riemannian conjugate gradient methods, and one of them is also isometric. It is known that the Ring-Wirth nonexpansive condition does not hold for traditional vector transports as the differentiated retractions of QR and polar decompositions. Practical formulae of the new vector transports for low-rank matrices are obtained. Dai’s nonmonotone conjugate gradient method is generalized to the Riemannian case and global convergence of the new algorithm is established under standard assumptions. Numerical results on a variety of low-rank test problems demonstrate the effectiveness of the new method. |
doi_str_mv | 10.1007/s10589-016-9883-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893900835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321147107</sourcerecordid><originalsourceid>FETCH-LOGICAL-p189t-1b23efb8896a0ea756d9822a36d89531a2d1ac939c405723e81c32a679ce40e53</originalsourceid><addsrcrecordid>eNpd0MtqwzAQBVBRWmj6-IDuBN10o3Yk2bK0DKEvCAT6WBvFHicKtpRa8qZfX4V0UQoDszncGS4hNxzuOUD1EDmU2jDgihmtJStOyIyXlWRCm-KUzMAIxRSAPCcXMe4AwFRSzMhqTt8cDtZ7Zz1tgt9NG5uQbkbbOvSJDpi2oaVdGGnYJze4b5tc8DRP2iJ9Tw477GlOcF3o2yty1tk-4vXvviSfT48fixe2XD2_LuZLtufaJMbXQmK31tooC2irUrVGC2GlarUpJbei5bYx0jQFlFW2mjdSWFWZBgvAUl6Su2PufgxfE8ZUDy422PfWY5hina9IA6Dlgd7-o7swjT5_l5UGpUEIlZU4qrgfnd_g-EdBfei4PnZc547rQ8d1IX8Av8luOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880680226</pqid></control><display><type>article</type><title>A Riemannian conjugate gradient method for optimization on the Stiefel manifold</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Zhu, Xiaojing</creator><creatorcontrib>Zhu, Xiaojing</creatorcontrib><description>In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental for convergence analysis of Riemannian conjugate gradient methods, and one of them is also isometric. It is known that the Ring-Wirth nonexpansive condition does not hold for traditional vector transports as the differentiated retractions of QR and polar decompositions. Practical formulae of the new vector transports for low-rank matrices are obtained. Dai’s nonmonotone conjugate gradient method is generalized to the Riemannian case and global convergence of the new algorithm is established under standard assumptions. Numerical results on a variety of low-rank test problems demonstrate the effectiveness of the new method.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-016-9883-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Computer science ; Conjugate gradient method ; Convergence ; Convex and Discrete Geometry ; Decomposition ; Euclidean space ; Management Science ; Manifolds ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Statistics ; Studies ; Topological manifolds ; Transport</subject><ispartof>Computational optimization and applications, 2017-05, Vol.67 (1), p.73-110</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Computational Optimization and Applications is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-016-9883-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-016-9883-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Zhu, Xiaojing</creatorcontrib><title>A Riemannian conjugate gradient method for optimization on the Stiefel manifold</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental for convergence analysis of Riemannian conjugate gradient methods, and one of them is also isometric. It is known that the Ring-Wirth nonexpansive condition does not hold for traditional vector transports as the differentiated retractions of QR and polar decompositions. Practical formulae of the new vector transports for low-rank matrices are obtained. Dai’s nonmonotone conjugate gradient method is generalized to the Riemannian case and global convergence of the new algorithm is established under standard assumptions. Numerical results on a variety of low-rank test problems demonstrate the effectiveness of the new method.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Computer science</subject><subject>Conjugate gradient method</subject><subject>Convergence</subject><subject>Convex and Discrete Geometry</subject><subject>Decomposition</subject><subject>Euclidean space</subject><subject>Management Science</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Statistics</subject><subject>Studies</subject><subject>Topological manifolds</subject><subject>Transport</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0MtqwzAQBVBRWmj6-IDuBN10o3Yk2bK0DKEvCAT6WBvFHicKtpRa8qZfX4V0UQoDszncGS4hNxzuOUD1EDmU2jDgihmtJStOyIyXlWRCm-KUzMAIxRSAPCcXMe4AwFRSzMhqTt8cDtZ7Zz1tgt9NG5uQbkbbOvSJDpi2oaVdGGnYJze4b5tc8DRP2iJ9Tw477GlOcF3o2yty1tk-4vXvviSfT48fixe2XD2_LuZLtufaJMbXQmK31tooC2irUrVGC2GlarUpJbei5bYx0jQFlFW2mjdSWFWZBgvAUl6Su2PufgxfE8ZUDy422PfWY5hina9IA6Dlgd7-o7swjT5_l5UGpUEIlZU4qrgfnd_g-EdBfei4PnZc547rQ8d1IX8Av8luOA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Zhu, Xiaojing</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170501</creationdate><title>A Riemannian conjugate gradient method for optimization on the Stiefel manifold</title><author>Zhu, Xiaojing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p189t-1b23efb8896a0ea756d9822a36d89531a2d1ac939c405723e81c32a679ce40e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Computer science</topic><topic>Conjugate gradient method</topic><topic>Convergence</topic><topic>Convex and Discrete Geometry</topic><topic>Decomposition</topic><topic>Euclidean space</topic><topic>Management Science</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Statistics</topic><topic>Studies</topic><topic>Topological manifolds</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaojing</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiaojing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Riemannian conjugate gradient method for optimization on the Stiefel manifold</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>67</volume><issue>1</issue><spage>73</spage><epage>110</epage><pages>73-110</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper we propose a new Riemannian conjugate gradient method for optimization on the Stiefel manifold. We introduce two novel vector transports associated with the retraction constructed by the Cayley transform. Both of them satisfy the Ring-Wirth nonexpansive condition, which is fundamental for convergence analysis of Riemannian conjugate gradient methods, and one of them is also isometric. It is known that the Ring-Wirth nonexpansive condition does not hold for traditional vector transports as the differentiated retractions of QR and polar decompositions. Practical formulae of the new vector transports for low-rank matrices are obtained. Dai’s nonmonotone conjugate gradient method is generalized to the Riemannian case and global convergence of the new algorithm is established under standard assumptions. Numerical results on a variety of low-rank test problems demonstrate the effectiveness of the new method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-016-9883-4</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2017-05, Vol.67 (1), p.73-110 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893900835 |
source | EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Algorithms Analysis Computer science Conjugate gradient method Convergence Convex and Discrete Geometry Decomposition Euclidean space Management Science Manifolds Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Methods Operations Research Operations Research/Decision Theory Optimization Statistics Studies Topological manifolds Transport |
title | A Riemannian conjugate gradient method for optimization on the Stiefel manifold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Riemannian%20conjugate%20gradient%20method%20for%20optimization%20on%20the%20Stiefel%20manifold&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Zhu,%20Xiaojing&rft.date=2017-05-01&rft.volume=67&rft.issue=1&rft.spage=73&rft.epage=110&rft.pages=73-110&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-016-9883-4&rft_dat=%3Cproquest_sprin%3E4321147107%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880680226&rft_id=info:pmid/&rfr_iscdi=true |