Do big data support TV viewing rate forecasting? A case study of a Korean TV drama
This study focuses on big data, including data from social networking sites (SNS), and data that can complement prior researches on TV viewing rate prediction. The paper analyzes the variables, which influence the average minute rating (AMR) and share rating (SHR) through regression analysis after g...
Gespeichert in:
Veröffentlicht in: | Information systems frontiers 2017-04, Vol.19 (2), p.411-420 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 2 |
container_start_page | 411 |
container_title | Information systems frontiers |
container_volume | 19 |
creator | Ahn, Jongchang Ma, Kyungran Lee, Ook Sura, Suaini |
description | This study focuses on big data, including data from social networking sites (SNS), and data that can complement prior researches on TV viewing rate prediction. The paper analyzes the variables, which influence the average minute rating (AMR) and share rating (SHR) through regression analysis after gathering buzz data on a 20-episode drama series in Korea. The R-square value of regression analysis results shows that the consumer-generated media (CGM) variable including SNS items explained 64 % of both AMR and SHR. However, the Media variable is not statistically significant. For SNS items, the Korean SNS me2DAY and DaumYozm are statistically significant for AMR and SHR, but Twitter is not significant. This study contributes to practitioners’ ability to alleviate the hurdles of broadcasting production communities on the difficulty of predicting viewing rate in advance. Thus, it is possible to determine whether to invest production cost persistently or to adjust the broadcasting volume based on viewers’ response. |
doi_str_mv | 10.1007/s10796-016-9659-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893900081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321313597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-48c8fc7c45670a2e7281a3e1d3f85da36d234544bbf1124bbcb410cbce9f3e893</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhQdRsFZ_gLuAGzfRPCfJSkp9YkGQ6jZkMkmZ0k7GZEbpvzdlXIjg6h7u_c7hcoriHKMrjJC4ThgJVUKES6hKriA_KCaYCwIVw-owayoFpJSUx8VJSmuUQSL4pHi9DaBqVqA2vQFp6LoQe7B8B5-N-2raFYimd8CH6KxJfV7cgBnI0oHUD_UOBA8MeM5n0-5ddTRbc1ocebNJ7uxnTou3-7vl_BEuXh6e5rMFtJSpHjJppbfCMl4KZIgTRGJDHa6pl7w2tKwJZZyxqvIYkzxsxTCylXXKUycVnRaXY24Xw8fgUq-3TbJuszGtC0PSODMKISRxRi_-oOswxDZ_lylJaEm5kpnCI2VjSCk6r7vYbE3caYz0vmU9tqxzeXrfsubZQ0ZPymy7cvFX8r-mb-j4fbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1882363598</pqid></control><display><type>article</type><title>Do big data support TV viewing rate forecasting? A case study of a Korean TV drama</title><source>SpringerLink Journals</source><creator>Ahn, Jongchang ; Ma, Kyungran ; Lee, Ook ; Sura, Suaini</creator><creatorcontrib>Ahn, Jongchang ; Ma, Kyungran ; Lee, Ook ; Sura, Suaini</creatorcontrib><description>This study focuses on big data, including data from social networking sites (SNS), and data that can complement prior researches on TV viewing rate prediction. The paper analyzes the variables, which influence the average minute rating (AMR) and share rating (SHR) through regression analysis after gathering buzz data on a 20-episode drama series in Korea. The R-square value of regression analysis results shows that the consumer-generated media (CGM) variable including SNS items explained 64 % of both AMR and SHR. However, the Media variable is not statistically significant. For SNS items, the Korean SNS me2DAY and DaumYozm are statistically significant for AMR and SHR, but Twitter is not significant. This study contributes to practitioners’ ability to alleviate the hurdles of broadcasting production communities on the difficulty of predicting viewing rate in advance. Thus, it is possible to determine whether to invest production cost persistently or to adjust the broadcasting volume based on viewers’ response.</description><identifier>ISSN: 1387-3326</identifier><identifier>EISSN: 1572-9419</identifier><identifier>DOI: 10.1007/s10796-016-9659-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Big Data ; Broadcasting ; Business and Management ; Case studies ; Complement ; Consumers ; Control ; Customer relationship management ; Customer satisfaction ; Data analysis ; Data management ; Drama ; Information systems ; Internet stocks ; Investments ; IT in Business ; Literature reviews ; Management of Computing and Information Systems ; Manufacturing engineering ; Marketing ; Media ; Operations Research/Decision Theory ; Principal components analysis ; Ratings ; Regression analysis ; Social networks ; Social research ; Studies ; Systems Theory ; Television programs ; Television ratings ; Trends ; Viewing</subject><ispartof>Information systems frontiers, 2017-04, Vol.19 (2), p.411-420</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Information Systems Frontiers is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-48c8fc7c45670a2e7281a3e1d3f85da36d234544bbf1124bbcb410cbce9f3e893</citedby><cites>FETCH-LOGICAL-c349t-48c8fc7c45670a2e7281a3e1d3f85da36d234544bbf1124bbcb410cbce9f3e893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10796-016-9659-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10796-016-9659-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ahn, Jongchang</creatorcontrib><creatorcontrib>Ma, Kyungran</creatorcontrib><creatorcontrib>Lee, Ook</creatorcontrib><creatorcontrib>Sura, Suaini</creatorcontrib><title>Do big data support TV viewing rate forecasting? A case study of a Korean TV drama</title><title>Information systems frontiers</title><addtitle>Inf Syst Front</addtitle><description>This study focuses on big data, including data from social networking sites (SNS), and data that can complement prior researches on TV viewing rate prediction. The paper analyzes the variables, which influence the average minute rating (AMR) and share rating (SHR) through regression analysis after gathering buzz data on a 20-episode drama series in Korea. The R-square value of regression analysis results shows that the consumer-generated media (CGM) variable including SNS items explained 64 % of both AMR and SHR. However, the Media variable is not statistically significant. For SNS items, the Korean SNS me2DAY and DaumYozm are statistically significant for AMR and SHR, but Twitter is not significant. This study contributes to practitioners’ ability to alleviate the hurdles of broadcasting production communities on the difficulty of predicting viewing rate in advance. Thus, it is possible to determine whether to invest production cost persistently or to adjust the broadcasting volume based on viewers’ response.</description><subject>Big Data</subject><subject>Broadcasting</subject><subject>Business and Management</subject><subject>Case studies</subject><subject>Complement</subject><subject>Consumers</subject><subject>Control</subject><subject>Customer relationship management</subject><subject>Customer satisfaction</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Drama</subject><subject>Information systems</subject><subject>Internet stocks</subject><subject>Investments</subject><subject>IT in Business</subject><subject>Literature reviews</subject><subject>Management of Computing and Information Systems</subject><subject>Manufacturing engineering</subject><subject>Marketing</subject><subject>Media</subject><subject>Operations Research/Decision Theory</subject><subject>Principal components analysis</subject><subject>Ratings</subject><subject>Regression analysis</subject><subject>Social networks</subject><subject>Social research</subject><subject>Studies</subject><subject>Systems Theory</subject><subject>Television programs</subject><subject>Television ratings</subject><subject>Trends</subject><subject>Viewing</subject><issn>1387-3326</issn><issn>1572-9419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhQdRsFZ_gLuAGzfRPCfJSkp9YkGQ6jZkMkmZ0k7GZEbpvzdlXIjg6h7u_c7hcoriHKMrjJC4ThgJVUKES6hKriA_KCaYCwIVw-owayoFpJSUx8VJSmuUQSL4pHi9DaBqVqA2vQFp6LoQe7B8B5-N-2raFYimd8CH6KxJfV7cgBnI0oHUD_UOBA8MeM5n0-5ddTRbc1ocebNJ7uxnTou3-7vl_BEuXh6e5rMFtJSpHjJppbfCMl4KZIgTRGJDHa6pl7w2tKwJZZyxqvIYkzxsxTCylXXKUycVnRaXY24Xw8fgUq-3TbJuszGtC0PSODMKISRxRi_-oOswxDZ_lylJaEm5kpnCI2VjSCk6r7vYbE3caYz0vmU9tqxzeXrfsubZQ0ZPymy7cvFX8r-mb-j4fbg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Ahn, Jongchang</creator><creator>Ma, Kyungran</creator><creator>Lee, Ook</creator><creator>Sura, Suaini</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170401</creationdate><title>Do big data support TV viewing rate forecasting? A case study of a Korean TV drama</title><author>Ahn, Jongchang ; Ma, Kyungran ; Lee, Ook ; Sura, Suaini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-48c8fc7c45670a2e7281a3e1d3f85da36d234544bbf1124bbcb410cbce9f3e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big Data</topic><topic>Broadcasting</topic><topic>Business and Management</topic><topic>Case studies</topic><topic>Complement</topic><topic>Consumers</topic><topic>Control</topic><topic>Customer relationship management</topic><topic>Customer satisfaction</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Drama</topic><topic>Information systems</topic><topic>Internet stocks</topic><topic>Investments</topic><topic>IT in Business</topic><topic>Literature reviews</topic><topic>Management of Computing and Information Systems</topic><topic>Manufacturing engineering</topic><topic>Marketing</topic><topic>Media</topic><topic>Operations Research/Decision Theory</topic><topic>Principal components analysis</topic><topic>Ratings</topic><topic>Regression analysis</topic><topic>Social networks</topic><topic>Social research</topic><topic>Studies</topic><topic>Systems Theory</topic><topic>Television programs</topic><topic>Television ratings</topic><topic>Trends</topic><topic>Viewing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Jongchang</creatorcontrib><creatorcontrib>Ma, Kyungran</creatorcontrib><creatorcontrib>Lee, Ook</creatorcontrib><creatorcontrib>Sura, Suaini</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Information systems frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Jongchang</au><au>Ma, Kyungran</au><au>Lee, Ook</au><au>Sura, Suaini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do big data support TV viewing rate forecasting? A case study of a Korean TV drama</atitle><jtitle>Information systems frontiers</jtitle><stitle>Inf Syst Front</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>19</volume><issue>2</issue><spage>411</spage><epage>420</epage><pages>411-420</pages><issn>1387-3326</issn><eissn>1572-9419</eissn><abstract>This study focuses on big data, including data from social networking sites (SNS), and data that can complement prior researches on TV viewing rate prediction. The paper analyzes the variables, which influence the average minute rating (AMR) and share rating (SHR) through regression analysis after gathering buzz data on a 20-episode drama series in Korea. The R-square value of regression analysis results shows that the consumer-generated media (CGM) variable including SNS items explained 64 % of both AMR and SHR. However, the Media variable is not statistically significant. For SNS items, the Korean SNS me2DAY and DaumYozm are statistically significant for AMR and SHR, but Twitter is not significant. This study contributes to practitioners’ ability to alleviate the hurdles of broadcasting production communities on the difficulty of predicting viewing rate in advance. Thus, it is possible to determine whether to invest production cost persistently or to adjust the broadcasting volume based on viewers’ response.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10796-016-9659-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-3326 |
ispartof | Information systems frontiers, 2017-04, Vol.19 (2), p.411-420 |
issn | 1387-3326 1572-9419 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893900081 |
source | SpringerLink Journals |
subjects | Big Data Broadcasting Business and Management Case studies Complement Consumers Control Customer relationship management Customer satisfaction Data analysis Data management Drama Information systems Internet stocks Investments IT in Business Literature reviews Management of Computing and Information Systems Manufacturing engineering Marketing Media Operations Research/Decision Theory Principal components analysis Ratings Regression analysis Social networks Social research Studies Systems Theory Television programs Television ratings Trends Viewing |
title | Do big data support TV viewing rate forecasting? A case study of a Korean TV drama |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20big%20data%20support%20TV%20viewing%20rate%20forecasting?%20A%20case%20study%20of%20a%20Korean%20TV%20drama&rft.jtitle=Information%20systems%20frontiers&rft.au=Ahn,%20Jongchang&rft.date=2017-04-01&rft.volume=19&rft.issue=2&rft.spage=411&rft.epage=420&rft.pages=411-420&rft.issn=1387-3326&rft.eissn=1572-9419&rft_id=info:doi/10.1007/s10796-016-9659-5&rft_dat=%3Cproquest_cross%3E4321313597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1882363598&rft_id=info:pmid/&rfr_iscdi=true |