On Backus Average for Generally Anisotropic Layers

In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440, 1962 ) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of elasticity 2017-04, Vol.127 (2), p.179-196
Hauptverfasser: Bos, Len, Dalton, David R., Slawinski, Michael A., Stanoev, Theodore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 179
container_title Journal of elasticity
container_volume 127
creator Bos, Len
Dalton, David R.
Slawinski, Michael A.
Stanoev, Theodore
description In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440, 1962 ) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus ( 1962 ) for the case of isotropic and transversely isotropic layers. In the over half-a-century since the publications of Backus ( 1962 ) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper. We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process. In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems.
doi_str_mv 10.1007/s10659-016-9608-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893899309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4319723661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-fb7e28e9921533e9dd62c0e440b9f85c6b91f62b7aa90192ffe49bef4826f1d63</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeAFy-rsx_Z7Bxr0SoUetHzkqSzJTVN6m4jtL_elXoQwdMw8LzvDA9j1wLuBEBxHwWYHDkIw9GA5YcTNhJ5obg0VpyyEahCc5Wr_JxdxLgGALQaRkwuuuyhrN-HmE0-KZQrynwfshl1aWnbfTbpmtjvQr9t6mxe7inES3bmyzbS1c8cs7enx9fpM58vZi_TyZzXSuOO-6ogaQlRilwpwuXSyBpIa6jQ27w2FQpvZFWUJYJA6T1prMhrK40XS6PG7PbYuw39x0Bx5zZNrKlty476ITphUVlEBZjQmz_ouh9Cl75LVJHOK6vzRIkjVYc-xkDebUOzKcPeCXDfFt3RoksW3bdFd0gZeczExHYrCr-a_w19AcGuc8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875333845</pqid></control><display><type>article</type><title>On Backus Average for Generally Anisotropic Layers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bos, Len ; Dalton, David R. ; Slawinski, Michael A. ; Stanoev, Theodore</creator><creatorcontrib>Bos, Len ; Dalton, David R. ; Slawinski, Michael A. ; Stanoev, Theodore</creatorcontrib><description>In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440, 1962 ) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus ( 1962 ) for the case of isotropic and transversely isotropic layers. In the over half-a-century since the publications of Backus ( 1962 ) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper. We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process. In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-016-9608-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Approximation ; Automotive Engineering ; Classical Mechanics ; Documents ; Elasticity ; Equivalence ; Formulas (mathematics) ; Mathematical analysis ; Physics ; Physics and Astronomy ; Thin films</subject><ispartof>Journal of elasticity, 2017-04, Vol.127 (2), p.179-196</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Journal of Elasticity is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-fb7e28e9921533e9dd62c0e440b9f85c6b91f62b7aa90192ffe49bef4826f1d63</citedby><cites>FETCH-LOGICAL-c349t-fb7e28e9921533e9dd62c0e440b9f85c6b91f62b7aa90192ffe49bef4826f1d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-016-9608-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-016-9608-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bos, Len</creatorcontrib><creatorcontrib>Dalton, David R.</creatorcontrib><creatorcontrib>Slawinski, Michael A.</creatorcontrib><creatorcontrib>Stanoev, Theodore</creatorcontrib><title>On Backus Average for Generally Anisotropic Layers</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440, 1962 ) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus ( 1962 ) for the case of isotropic and transversely isotropic layers. In the over half-a-century since the publications of Backus ( 1962 ) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper. We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process. In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Documents</subject><subject>Elasticity</subject><subject>Equivalence</subject><subject>Formulas (mathematics)</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Thin films</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeAFy-rsx_Z7Bxr0SoUetHzkqSzJTVN6m4jtL_elXoQwdMw8LzvDA9j1wLuBEBxHwWYHDkIw9GA5YcTNhJ5obg0VpyyEahCc5Wr_JxdxLgGALQaRkwuuuyhrN-HmE0-KZQrynwfshl1aWnbfTbpmtjvQr9t6mxe7inES3bmyzbS1c8cs7enx9fpM58vZi_TyZzXSuOO-6ogaQlRilwpwuXSyBpIa6jQ27w2FQpvZFWUJYJA6T1prMhrK40XS6PG7PbYuw39x0Bx5zZNrKlty476ITphUVlEBZjQmz_ouh9Cl75LVJHOK6vzRIkjVYc-xkDebUOzKcPeCXDfFt3RoksW3bdFd0gZeczExHYrCr-a_w19AcGuc8g</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Bos, Len</creator><creator>Dalton, David R.</creator><creator>Slawinski, Michael A.</creator><creator>Stanoev, Theodore</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20170401</creationdate><title>On Backus Average for Generally Anisotropic Layers</title><author>Bos, Len ; Dalton, David R. ; Slawinski, Michael A. ; Stanoev, Theodore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-fb7e28e9921533e9dd62c0e440b9f85c6b91f62b7aa90192ffe49bef4826f1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Documents</topic><topic>Elasticity</topic><topic>Equivalence</topic><topic>Formulas (mathematics)</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bos, Len</creatorcontrib><creatorcontrib>Dalton, David R.</creatorcontrib><creatorcontrib>Slawinski, Michael A.</creatorcontrib><creatorcontrib>Stanoev, Theodore</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bos, Len</au><au>Dalton, David R.</au><au>Slawinski, Michael A.</au><au>Stanoev, Theodore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Backus Average for Generally Anisotropic Layers</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>127</volume><issue>2</issue><spage>179</spage><epage>196</epage><pages>179-196</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440, 1962 ) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus ( 1962 ) for the case of isotropic and transversely isotropic layers. In the over half-a-century since the publications of Backus ( 1962 ) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper. We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process. In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-016-9608-z</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0374-3535
ispartof Journal of elasticity, 2017-04, Vol.127 (2), p.179-196
issn 0374-3535
1573-2681
language eng
recordid cdi_proquest_miscellaneous_1893899309
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Approximation
Automotive Engineering
Classical Mechanics
Documents
Elasticity
Equivalence
Formulas (mathematics)
Mathematical analysis
Physics
Physics and Astronomy
Thin films
title On Backus Average for Generally Anisotropic Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Backus%20Average%20for%20Generally%20Anisotropic%20Layers&rft.jtitle=Journal%20of%20elasticity&rft.au=Bos,%20Len&rft.date=2017-04-01&rft.volume=127&rft.issue=2&rft.spage=179&rft.epage=196&rft.pages=179-196&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-016-9608-z&rft_dat=%3Cproquest_cross%3E4319723661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875333845&rft_id=info:pmid/&rfr_iscdi=true