On Backus Average for Generally Anisotropic Layers
In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440, 1962 ) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the res...
Gespeichert in:
Veröffentlicht in: | Journal of elasticity 2017-04, Vol.127 (2), p.179-196 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 2 |
container_start_page | 179 |
container_title | Journal of elasticity |
container_volume | 127 |
creator | Bos, Len Dalton, David R. Slawinski, Michael A. Stanoev, Theodore |
description | In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440,
1962
) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (
1962
) for the case of isotropic and transversely isotropic layers.
In the over half-a-century since the publications of Backus (
1962
) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper.
We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process.
In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems. |
doi_str_mv | 10.1007/s10659-016-9608-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893899309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4319723661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-fb7e28e9921533e9dd62c0e440b9f85c6b91f62b7aa90192ffe49bef4826f1d63</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeAFy-rsx_Z7Bxr0SoUetHzkqSzJTVN6m4jtL_elXoQwdMw8LzvDA9j1wLuBEBxHwWYHDkIw9GA5YcTNhJ5obg0VpyyEahCc5Wr_JxdxLgGALQaRkwuuuyhrN-HmE0-KZQrynwfshl1aWnbfTbpmtjvQr9t6mxe7inES3bmyzbS1c8cs7enx9fpM58vZi_TyZzXSuOO-6ogaQlRilwpwuXSyBpIa6jQ27w2FQpvZFWUJYJA6T1prMhrK40XS6PG7PbYuw39x0Bx5zZNrKlty476ITphUVlEBZjQmz_ouh9Cl75LVJHOK6vzRIkjVYc-xkDebUOzKcPeCXDfFt3RoksW3bdFd0gZeczExHYrCr-a_w19AcGuc8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875333845</pqid></control><display><type>article</type><title>On Backus Average for Generally Anisotropic Layers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bos, Len ; Dalton, David R. ; Slawinski, Michael A. ; Stanoev, Theodore</creator><creatorcontrib>Bos, Len ; Dalton, David R. ; Slawinski, Michael A. ; Stanoev, Theodore</creatorcontrib><description>In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440,
1962
) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (
1962
) for the case of isotropic and transversely isotropic layers.
In the over half-a-century since the publications of Backus (
1962
) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper.
We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process.
In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems.</description><identifier>ISSN: 0374-3535</identifier><identifier>EISSN: 1573-2681</identifier><identifier>DOI: 10.1007/s10659-016-9608-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Approximation ; Automotive Engineering ; Classical Mechanics ; Documents ; Elasticity ; Equivalence ; Formulas (mathematics) ; Mathematical analysis ; Physics ; Physics and Astronomy ; Thin films</subject><ispartof>Journal of elasticity, 2017-04, Vol.127 (2), p.179-196</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Journal of Elasticity is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-fb7e28e9921533e9dd62c0e440b9f85c6b91f62b7aa90192ffe49bef4826f1d63</citedby><cites>FETCH-LOGICAL-c349t-fb7e28e9921533e9dd62c0e440b9f85c6b91f62b7aa90192ffe49bef4826f1d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10659-016-9608-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10659-016-9608-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bos, Len</creatorcontrib><creatorcontrib>Dalton, David R.</creatorcontrib><creatorcontrib>Slawinski, Michael A.</creatorcontrib><creatorcontrib>Stanoev, Theodore</creatorcontrib><title>On Backus Average for Generally Anisotropic Layers</title><title>Journal of elasticity</title><addtitle>J Elast</addtitle><description>In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440,
1962
) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (
1962
) for the case of isotropic and transversely isotropic layers.
In the over half-a-century since the publications of Backus (
1962
) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper.
We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process.
In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems.</description><subject>Anisotropy</subject><subject>Approximation</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Documents</subject><subject>Elasticity</subject><subject>Equivalence</subject><subject>Formulas (mathematics)</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Thin films</subject><issn>0374-3535</issn><issn>1573-2681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeAFy-rsx_Z7Bxr0SoUetHzkqSzJTVN6m4jtL_elXoQwdMw8LzvDA9j1wLuBEBxHwWYHDkIw9GA5YcTNhJ5obg0VpyyEahCc5Wr_JxdxLgGALQaRkwuuuyhrN-HmE0-KZQrynwfshl1aWnbfTbpmtjvQr9t6mxe7inES3bmyzbS1c8cs7enx9fpM58vZi_TyZzXSuOO-6ogaQlRilwpwuXSyBpIa6jQ27w2FQpvZFWUJYJA6T1prMhrK40XS6PG7PbYuw39x0Bx5zZNrKlty476ITphUVlEBZjQmz_ouh9Cl75LVJHOK6vzRIkjVYc-xkDebUOzKcPeCXDfFt3RoksW3bdFd0gZeczExHYrCr-a_w19AcGuc8g</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Bos, Len</creator><creator>Dalton, David R.</creator><creator>Slawinski, Michael A.</creator><creator>Stanoev, Theodore</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20170401</creationdate><title>On Backus Average for Generally Anisotropic Layers</title><author>Bos, Len ; Dalton, David R. ; Slawinski, Michael A. ; Stanoev, Theodore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-fb7e28e9921533e9dd62c0e440b9f85c6b91f62b7aa90192ffe49bef4826f1d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Approximation</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Documents</topic><topic>Elasticity</topic><topic>Equivalence</topic><topic>Formulas (mathematics)</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bos, Len</creatorcontrib><creatorcontrib>Dalton, David R.</creatorcontrib><creatorcontrib>Slawinski, Michael A.</creatorcontrib><creatorcontrib>Stanoev, Theodore</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of elasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bos, Len</au><au>Dalton, David R.</au><au>Slawinski, Michael A.</au><au>Stanoev, Theodore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Backus Average for Generally Anisotropic Layers</atitle><jtitle>Journal of elasticity</jtitle><stitle>J Elast</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>127</volume><issue>2</issue><spage>179</spage><epage>196</epage><pages>179-196</pages><issn>0374-3535</issn><eissn>1573-2681</eissn><abstract>In this paper, following the Backus (in J. Geophys. Res. 67(11):4427–4440,
1962
) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (
1962
) for the case of isotropic and transversely isotropic layers.
In the over half-a-century since the publications of Backus (
1962
) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of the mathematical underpinnings of the original formulation; hence this paper.
We prove that—within the long-wave approximation—if the thin layers obey stability conditions, then so does the equivalent medium. We examine—within the Backus-average context—the approximation of the average of a product as the product of averages, which underlies the averaging process.
In the presented examination we use the expression of Hooke’s law as a tensor equation; in other words, we use Kelvin’s—as opposed to Voigt’s—notation. In general, the tensorial notation allows us to conveniently examine effects due to rotations of coordinate systems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10659-016-9608-z</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-3535 |
ispartof | Journal of elasticity, 2017-04, Vol.127 (2), p.179-196 |
issn | 0374-3535 1573-2681 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893899309 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Approximation Automotive Engineering Classical Mechanics Documents Elasticity Equivalence Formulas (mathematics) Mathematical analysis Physics Physics and Astronomy Thin films |
title | On Backus Average for Generally Anisotropic Layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Backus%20Average%20for%20Generally%20Anisotropic%20Layers&rft.jtitle=Journal%20of%20elasticity&rft.au=Bos,%20Len&rft.date=2017-04-01&rft.volume=127&rft.issue=2&rft.spage=179&rft.epage=196&rft.pages=179-196&rft.issn=0374-3535&rft.eissn=1573-2681&rft_id=info:doi/10.1007/s10659-016-9608-z&rft_dat=%3Cproquest_cross%3E4319723661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875333845&rft_id=info:pmid/&rfr_iscdi=true |