Adaptive Partial Shortcuts: Path Optimization for Industrial Robotics
The quality of a path generated from an automated motion planning algorithm is of considerable importance, particularly when used in a real world robotic application. In this work a new path optimization algorithm, called the Adaptive Partial Shortcut algorithm, is presented. This algorithm optimize...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2017-04, Vol.86 (1), p.35-47 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Journal of intelligent & robotic systems |
container_volume | 86 |
creator | Polden, Joseph Pan, Zengxi Larkin, Nathan van Duin, Stephen |
description | The quality of a path generated from an automated motion planning algorithm is of considerable importance, particularly when used in a real world robotic application. In this work a new path optimization algorithm, called the Adaptive Partial Shortcut algorithm, is presented. This algorithm optimizes paths as a post process to motion planning, and is designed specifically for use on industrial manipulators. The algorithm optimizes a robot’s degrees of freedom independently allowing it to produce manipulator paths of particularly high quality. This new algorithm utilizes an adaptive method of selecting the degree of freedom to optimize at each iteration, giving it a high level of efficiency. Tests conducted show the effectiveness of the algorithm; over a range of different test paths, the adaptive algorithm was able to generate solutions with a 60 % reduction in collision checks compared to the original partial shortcut approach. |
doi_str_mv | 10.1007/s10846-016-0437-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893898564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893898564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f9024a3fece6cf4b81e19c279de094ba3c2ea84ed1208a25e9dad2b5bdbda5ed3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy-rk2x2N_FWSquFQsWPc8gmWbtlu6lJVqq_3pT1IIKHYZiZ5x1mXoQuMdxggPLWY2C0SAHHoFmZ7o_QCOdlFivgx2gEnOAUCC9O0Zn3GwDgLOcjNJtouQvNh0kepQuNbJPntXVB9cHfxVZYJ6s43jZfMjS2S2rrkkWnex_cgX2ylQ2N8ufopJatNxc_eYxe57OX6UO6XN0vppNlqijOQ1pzIFRmtVGmUDWtGDaYK1JybYDTSmaKGMmo0ZgAkyQ3XEtNqrzSlZa50dkYXQ97d86-98YHsW28Mm0rO2N7LzDjGYuPFTSiV3_Qje1dF6-LVMkgp1CySOGBUs5670wtdq7ZSvcpMIiDsWIwVkRjxcFYsY8aMmh8ZLs3435t_lf0DTxLfLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878054078</pqid></control><display><type>article</type><title>Adaptive Partial Shortcuts: Path Optimization for Industrial Robotics</title><source>SpringerLink</source><creator>Polden, Joseph ; Pan, Zengxi ; Larkin, Nathan ; van Duin, Stephen</creator><creatorcontrib>Polden, Joseph ; Pan, Zengxi ; Larkin, Nathan ; van Duin, Stephen</creatorcontrib><description>The quality of a path generated from an automated motion planning algorithm is of considerable importance, particularly when used in a real world robotic application. In this work a new path optimization algorithm, called the Adaptive Partial Shortcut algorithm, is presented. This algorithm optimizes paths as a post process to motion planning, and is designed specifically for use on industrial manipulators. The algorithm optimizes a robot’s degrees of freedom independently allowing it to produce manipulator paths of particularly high quality. This new algorithm utilizes an adaptive method of selecting the degree of freedom to optimize at each iteration, giving it a high level of efficiency. Tests conducted show the effectiveness of the algorithm; over a range of different test paths, the adaptive algorithm was able to generate solutions with a 60 % reduction in collision checks compared to the original partial shortcut approach.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-016-0437-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive algorithms ; Algorithms ; Artificial Intelligence ; Control ; Degrees of freedom ; Electrical Engineering ; Engineering ; Manipulators ; Mathematical analysis ; Mechanical Engineering ; Mechatronics ; Optimization ; Robot arms ; Robotics</subject><ispartof>Journal of intelligent & robotic systems, 2017-04, Vol.86 (1), p.35-47</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Journal of Intelligent & Robotic Systems is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f9024a3fece6cf4b81e19c279de094ba3c2ea84ed1208a25e9dad2b5bdbda5ed3</citedby><cites>FETCH-LOGICAL-c415t-f9024a3fece6cf4b81e19c279de094ba3c2ea84ed1208a25e9dad2b5bdbda5ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-016-0437-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-016-0437-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Polden, Joseph</creatorcontrib><creatorcontrib>Pan, Zengxi</creatorcontrib><creatorcontrib>Larkin, Nathan</creatorcontrib><creatorcontrib>van Duin, Stephen</creatorcontrib><title>Adaptive Partial Shortcuts: Path Optimization for Industrial Robotics</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>The quality of a path generated from an automated motion planning algorithm is of considerable importance, particularly when used in a real world robotic application. In this work a new path optimization algorithm, called the Adaptive Partial Shortcut algorithm, is presented. This algorithm optimizes paths as a post process to motion planning, and is designed specifically for use on industrial manipulators. The algorithm optimizes a robot’s degrees of freedom independently allowing it to produce manipulator paths of particularly high quality. This new algorithm utilizes an adaptive method of selecting the degree of freedom to optimize at each iteration, giving it a high level of efficiency. Tests conducted show the effectiveness of the algorithm; over a range of different test paths, the adaptive algorithm was able to generate solutions with a 60 % reduction in collision checks compared to the original partial shortcut approach.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Degrees of freedom</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Manipulators</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Robot arms</subject><subject>Robotics</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy-rk2x2N_FWSquFQsWPc8gmWbtlu6lJVqq_3pT1IIKHYZiZ5x1mXoQuMdxggPLWY2C0SAHHoFmZ7o_QCOdlFivgx2gEnOAUCC9O0Zn3GwDgLOcjNJtouQvNh0kepQuNbJPntXVB9cHfxVZYJ6s43jZfMjS2S2rrkkWnex_cgX2ylQ2N8ufopJatNxc_eYxe57OX6UO6XN0vppNlqijOQ1pzIFRmtVGmUDWtGDaYK1JybYDTSmaKGMmo0ZgAkyQ3XEtNqrzSlZa50dkYXQ97d86-98YHsW28Mm0rO2N7LzDjGYuPFTSiV3_Qje1dF6-LVMkgp1CySOGBUs5670wtdq7ZSvcpMIiDsWIwVkRjxcFYsY8aMmh8ZLs3435t_lf0DTxLfLk</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Polden, Joseph</creator><creator>Pan, Zengxi</creator><creator>Larkin, Nathan</creator><creator>van Duin, Stephen</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>F28</scope></search><sort><creationdate>20170401</creationdate><title>Adaptive Partial Shortcuts: Path Optimization for Industrial Robotics</title><author>Polden, Joseph ; Pan, Zengxi ; Larkin, Nathan ; van Duin, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f9024a3fece6cf4b81e19c279de094ba3c2ea84ed1208a25e9dad2b5bdbda5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Degrees of freedom</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Manipulators</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Robot arms</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polden, Joseph</creatorcontrib><creatorcontrib>Pan, Zengxi</creatorcontrib><creatorcontrib>Larkin, Nathan</creatorcontrib><creatorcontrib>van Duin, Stephen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polden, Joseph</au><au>Pan, Zengxi</au><au>Larkin, Nathan</au><au>van Duin, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Partial Shortcuts: Path Optimization for Industrial Robotics</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>86</volume><issue>1</issue><spage>35</spage><epage>47</epage><pages>35-47</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>The quality of a path generated from an automated motion planning algorithm is of considerable importance, particularly when used in a real world robotic application. In this work a new path optimization algorithm, called the Adaptive Partial Shortcut algorithm, is presented. This algorithm optimizes paths as a post process to motion planning, and is designed specifically for use on industrial manipulators. The algorithm optimizes a robot’s degrees of freedom independently allowing it to produce manipulator paths of particularly high quality. This new algorithm utilizes an adaptive method of selecting the degree of freedom to optimize at each iteration, giving it a high level of efficiency. Tests conducted show the effectiveness of the algorithm; over a range of different test paths, the adaptive algorithm was able to generate solutions with a 60 % reduction in collision checks compared to the original partial shortcut approach.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-016-0437-x</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2017-04, Vol.86 (1), p.35-47 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893898564 |
source | SpringerLink |
subjects | Adaptive algorithms Algorithms Artificial Intelligence Control Degrees of freedom Electrical Engineering Engineering Manipulators Mathematical analysis Mechanical Engineering Mechatronics Optimization Robot arms Robotics |
title | Adaptive Partial Shortcuts: Path Optimization for Industrial Robotics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Partial%20Shortcuts:%20Path%20Optimization%20for%20Industrial%20Robotics&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Polden,%20Joseph&rft.date=2017-04-01&rft.volume=86&rft.issue=1&rft.spage=35&rft.epage=47&rft.pages=35-47&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-016-0437-x&rft_dat=%3Cproquest_cross%3E1893898564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878054078&rft_id=info:pmid/&rfr_iscdi=true |