An algorithm for detection and phase estimation of protective elements periodic lattice on document image

Various periodic security elements, such as holograms, watermarks, and guilloches, are applied to documents in order to protect against counterfeiting. These elements can be detected and used to automatically check the authenticity of a document and to identify its type. They also make it possible t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2017, Vol.27 (1), p.53-65
Hauptverfasser: Chernov, T. S., Kolmakov, S. I., Nikolaev, D. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 65
container_issue 1
container_start_page 53
container_title Pattern recognition and image analysis
container_volume 27
creator Chernov, T. S.
Kolmakov, S. I.
Nikolaev, D. P.
description Various periodic security elements, such as holograms, watermarks, and guilloches, are applied to documents in order to protect against counterfeiting. These elements can be detected and used to automatically check the authenticity of a document and to identify its type. They also make it possible to use special OCR system parameters in areas of security elements. This paper is devoted to developing methods for the detection and localization of periodic background patterns based on two-dimensional discrete Fourier transform. The model of a document image with a periodic background structure is considered. Algorithms for the detection and localization of background structures that follow from the model are discussed. The behavior and accuracy characteristics of the algorithms are tested on samples of Russian passport images. Their tolerance to errors in document boundary detection are experimentally analyzed. Modified detection and localization algorithms that improve the separating detection capability and reduce localization error twofold are proposed such as masking and replacement of noisy parts of document images, background spectrum suppression, and estimation of phase components of a single periodic element.
doi_str_mv 10.1134/S1054661817010023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893898095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893898095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2643-d8be434e1272519ec85389effc4124c5e10dd60f17c733760da65187d7626653</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEuXxA7hZ4sIl4PUrybGqeEmVONB7FOxN6yqJi50g8e9xWg4IxMnWzjej2SXkCtgtgJB3r8CU1BoKyBkwxsURmYFSKtMc-HH6Jzmb9FNyFuOWMVZAyWfEzXtat2sf3LDpaOMDtTigGZxP897S3aaOSDEOrqv3Q9_QXfB75CMJLXbYD5HuMDhvnaFtPQzOIE2o9WacVJq8a7wgJ03dRrz8fs_J6uF-tXjKli-Pz4v5MjNcS5HZ4g2lkAg85wpKNIUSRYlNYyRwaRQCs1azBnKTC5FrZmutoMhtrrnWSpyTm0Nsavk-puJV56LBtq179GOsoChTXsHKCb3-hW79GPpULlG5BMWZEImCA2WCjzFgU-1CWih8VsCq6fbVn9snDz94YmL7NYYfyf-avgB1nYUa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874152033</pqid></control><display><type>article</type><title>An algorithm for detection and phase estimation of protective elements periodic lattice on document image</title><source>SpringerLink_现刊</source><creator>Chernov, T. S. ; Kolmakov, S. I. ; Nikolaev, D. P.</creator><creatorcontrib>Chernov, T. S. ; Kolmakov, S. I. ; Nikolaev, D. P.</creatorcontrib><description>Various periodic security elements, such as holograms, watermarks, and guilloches, are applied to documents in order to protect against counterfeiting. These elements can be detected and used to automatically check the authenticity of a document and to identify its type. They also make it possible to use special OCR system parameters in areas of security elements. This paper is devoted to developing methods for the detection and localization of periodic background patterns based on two-dimensional discrete Fourier transform. The model of a document image with a periodic background structure is considered. Algorithms for the detection and localization of background structures that follow from the model are discussed. The behavior and accuracy characteristics of the algorithms are tested on samples of Russian passport images. Their tolerance to errors in document boundary detection are experimentally analyzed. Modified detection and localization algorithms that improve the separating detection capability and reduce localization error twofold are proposed such as masking and replacement of noisy parts of document images, background spectrum suppression, and estimation of phase components of a single periodic element.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661817010023</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accuracy ; Algorithms ; Applied Problems ; Computer Science ; Counterfeiting ; Documents ; Error detection ; Fourier transforms ; Holography ; Image detection ; Image Processing and Computer Vision ; Image processing systems ; Localization ; Noise ; Pattern Recognition ; Police dogs ; Position (location) ; Security ; Spectrum analysis ; Studies</subject><ispartof>Pattern recognition and image analysis, 2017, Vol.27 (1), p.53-65</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Pattern Recognition and Image Analysis is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2643-d8be434e1272519ec85389effc4124c5e10dd60f17c733760da65187d7626653</citedby><cites>FETCH-LOGICAL-c2643-d8be434e1272519ec85389effc4124c5e10dd60f17c733760da65187d7626653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661817010023$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661817010023$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chernov, T. S.</creatorcontrib><creatorcontrib>Kolmakov, S. I.</creatorcontrib><creatorcontrib>Nikolaev, D. P.</creatorcontrib><title>An algorithm for detection and phase estimation of protective elements periodic lattice on document image</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>Various periodic security elements, such as holograms, watermarks, and guilloches, are applied to documents in order to protect against counterfeiting. These elements can be detected and used to automatically check the authenticity of a document and to identify its type. They also make it possible to use special OCR system parameters in areas of security elements. This paper is devoted to developing methods for the detection and localization of periodic background patterns based on two-dimensional discrete Fourier transform. The model of a document image with a periodic background structure is considered. Algorithms for the detection and localization of background structures that follow from the model are discussed. The behavior and accuracy characteristics of the algorithms are tested on samples of Russian passport images. Their tolerance to errors in document boundary detection are experimentally analyzed. Modified detection and localization algorithms that improve the separating detection capability and reduce localization error twofold are proposed such as masking and replacement of noisy parts of document images, background spectrum suppression, and estimation of phase components of a single periodic element.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applied Problems</subject><subject>Computer Science</subject><subject>Counterfeiting</subject><subject>Documents</subject><subject>Error detection</subject><subject>Fourier transforms</subject><subject>Holography</subject><subject>Image detection</subject><subject>Image Processing and Computer Vision</subject><subject>Image processing systems</subject><subject>Localization</subject><subject>Noise</subject><subject>Pattern Recognition</subject><subject>Police dogs</subject><subject>Position (location)</subject><subject>Security</subject><subject>Spectrum analysis</subject><subject>Studies</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtPwzAQhC0EEuXxA7hZ4sIl4PUrybGqeEmVONB7FOxN6yqJi50g8e9xWg4IxMnWzjej2SXkCtgtgJB3r8CU1BoKyBkwxsURmYFSKtMc-HH6Jzmb9FNyFuOWMVZAyWfEzXtat2sf3LDpaOMDtTigGZxP897S3aaOSDEOrqv3Q9_QXfB75CMJLXbYD5HuMDhvnaFtPQzOIE2o9WacVJq8a7wgJ03dRrz8fs_J6uF-tXjKli-Pz4v5MjNcS5HZ4g2lkAg85wpKNIUSRYlNYyRwaRQCs1azBnKTC5FrZmutoMhtrrnWSpyTm0Nsavk-puJV56LBtq179GOsoChTXsHKCb3-hW79GPpULlG5BMWZEImCA2WCjzFgU-1CWih8VsCq6fbVn9snDz94YmL7NYYfyf-avgB1nYUa</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Chernov, T. S.</creator><creator>Kolmakov, S. I.</creator><creator>Nikolaev, D. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2017</creationdate><title>An algorithm for detection and phase estimation of protective elements periodic lattice on document image</title><author>Chernov, T. S. ; Kolmakov, S. I. ; Nikolaev, D. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2643-d8be434e1272519ec85389effc4124c5e10dd60f17c733760da65187d7626653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applied Problems</topic><topic>Computer Science</topic><topic>Counterfeiting</topic><topic>Documents</topic><topic>Error detection</topic><topic>Fourier transforms</topic><topic>Holography</topic><topic>Image detection</topic><topic>Image Processing and Computer Vision</topic><topic>Image processing systems</topic><topic>Localization</topic><topic>Noise</topic><topic>Pattern Recognition</topic><topic>Police dogs</topic><topic>Position (location)</topic><topic>Security</topic><topic>Spectrum analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chernov, T. S.</creatorcontrib><creatorcontrib>Kolmakov, S. I.</creatorcontrib><creatorcontrib>Nikolaev, D. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chernov, T. S.</au><au>Kolmakov, S. I.</au><au>Nikolaev, D. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm for detection and phase estimation of protective elements periodic lattice on document image</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2017</date><risdate>2017</risdate><volume>27</volume><issue>1</issue><spage>53</spage><epage>65</epage><pages>53-65</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>Various periodic security elements, such as holograms, watermarks, and guilloches, are applied to documents in order to protect against counterfeiting. These elements can be detected and used to automatically check the authenticity of a document and to identify its type. They also make it possible to use special OCR system parameters in areas of security elements. This paper is devoted to developing methods for the detection and localization of periodic background patterns based on two-dimensional discrete Fourier transform. The model of a document image with a periodic background structure is considered. Algorithms for the detection and localization of background structures that follow from the model are discussed. The behavior and accuracy characteristics of the algorithms are tested on samples of Russian passport images. Their tolerance to errors in document boundary detection are experimentally analyzed. Modified detection and localization algorithms that improve the separating detection capability and reduce localization error twofold are proposed such as masking and replacement of noisy parts of document images, background spectrum suppression, and estimation of phase components of a single periodic element.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661817010023</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2017, Vol.27 (1), p.53-65
issn 1054-6618
1555-6212
language eng
recordid cdi_proquest_miscellaneous_1893898095
source SpringerLink_现刊
subjects Accuracy
Algorithms
Applied Problems
Computer Science
Counterfeiting
Documents
Error detection
Fourier transforms
Holography
Image detection
Image Processing and Computer Vision
Image processing systems
Localization
Noise
Pattern Recognition
Police dogs
Position (location)
Security
Spectrum analysis
Studies
title An algorithm for detection and phase estimation of protective elements periodic lattice on document image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20for%20detection%20and%20phase%20estimation%20of%20protective%20elements%20periodic%20lattice%20on%20document%20image&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Chernov,%20T.%20S.&rft.date=2017&rft.volume=27&rft.issue=1&rft.spage=53&rft.epage=65&rft.pages=53-65&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661817010023&rft_dat=%3Cproquest_cross%3E1893898095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874152033&rft_id=info:pmid/&rfr_iscdi=true