Analyzing model distances between expert propositions with differently ordered logical variables of knowledge base formulas and collective clustering

This paper proves a theorem on the metrics taking into account the ordering (assigning of real numbers (0, 1) to variables of a formula) of elementary propositions in models by each expert and the degrees with which the models are scattered over the variables. This approach is proposed for the first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2017, Vol.27 (1), p.29-35
1. Verfasser: Vikent’ev, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 29
container_title Pattern recognition and image analysis
container_volume 27
creator Vikent’ev, A. A.
description This paper proves a theorem on the metrics taking into account the ordering (assigning of real numbers (0, 1) to variables of a formula) of elementary propositions in models by each expert and the degrees with which the models are scattered over the variables. This approach is proposed for the first time. Some examples demonstrating the novelty of the metrics are presented, and a method is proposed that allows a new metrics to be constructed based on previously obtained and/or already available metrics.
doi_str_mv 10.1134/S1054661817010175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893895165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893895165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2645-ca48077442766578f6188664c221d99afeaff6f71084637a86c61a6e50a0b3593</originalsourceid><addsrcrecordid>eNp1kU1uFDEQhVsIJELCAdhZYsOmg8vtv15GESRIkVgA65bHXR4cPHZjuzMM98h98WhYIBCrKqm-91SvquteAb0EGPjbT0AFlxI0KAoUlHjSnYEQopcM2NPWt3F_nD_vXpRyTynVMLKz7vEqmnD46eOW7NKMgcy-VBMtFrLBukeMBH8smCtZclpS8dWnWMje168NdQ4zxhoOJOW5tTMJaeutCeTBZG82odkkR77FtA84b5FsTEHiUt6twRRi4kxsCgFt9Q9IbFhLxdx2ueieORMKvvxdz7sv7999vr7t7z7efLi-uustk1z01nBNleKcKSmF0q7l01JyyxjM42gcGuekU0A1l4MyWloJRqKghm4GMQ7n3ZuTbwv3fcVSp50vFkMwEdNaJtDjoEcBUjT09V_ofVpzO96RUhwEo4NsFJwom1MpGd20ZL8z-TABnY6Pmv55VNOwk6Ysx-yY_3D-r-gX2iCXJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874152036</pqid></control><display><type>article</type><title>Analyzing model distances between expert propositions with differently ordered logical variables of knowledge base formulas and collective clustering</title><source>Springer Nature - Complete Springer Journals</source><creator>Vikent’ev, A. A.</creator><creatorcontrib>Vikent’ev, A. A.</creatorcontrib><description>This paper proves a theorem on the metrics taking into account the ordering (assigning of real numbers (0, 1) to variables of a formula) of elementary propositions in models by each expert and the degrees with which the models are scattered over the variables. This approach is proposed for the first time. Some examples demonstrating the novelty of the metrics are presented, and a method is proposed that allows a new metrics to be constructed based on previously obtained and/or already available metrics.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661817010175</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Clustering ; Computer Science ; Consumer goods ; Formulas (mathematics) ; Image analysis ; Image Processing and Computer Vision ; Knowledge ; Knowledge base ; Mathematical Method in Pattern Recognition ; Mathematical models ; Order disorder ; Pattern Recognition ; Real numbers ; Studies ; Theorems</subject><ispartof>Pattern recognition and image analysis, 2017, Vol.27 (1), p.29-35</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Pattern Recognition and Image Analysis is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661817010175$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661817010175$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vikent’ev, A. A.</creatorcontrib><title>Analyzing model distances between expert propositions with differently ordered logical variables of knowledge base formulas and collective clustering</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>This paper proves a theorem on the metrics taking into account the ordering (assigning of real numbers (0, 1) to variables of a formula) of elementary propositions in models by each expert and the degrees with which the models are scattered over the variables. This approach is proposed for the first time. Some examples demonstrating the novelty of the metrics are presented, and a method is proposed that allows a new metrics to be constructed based on previously obtained and/or already available metrics.</description><subject>Clustering</subject><subject>Computer Science</subject><subject>Consumer goods</subject><subject>Formulas (mathematics)</subject><subject>Image analysis</subject><subject>Image Processing and Computer Vision</subject><subject>Knowledge</subject><subject>Knowledge base</subject><subject>Mathematical Method in Pattern Recognition</subject><subject>Mathematical models</subject><subject>Order disorder</subject><subject>Pattern Recognition</subject><subject>Real numbers</subject><subject>Studies</subject><subject>Theorems</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1uFDEQhVsIJELCAdhZYsOmg8vtv15GESRIkVgA65bHXR4cPHZjuzMM98h98WhYIBCrKqm-91SvquteAb0EGPjbT0AFlxI0KAoUlHjSnYEQopcM2NPWt3F_nD_vXpRyTynVMLKz7vEqmnD46eOW7NKMgcy-VBMtFrLBukeMBH8smCtZclpS8dWnWMje168NdQ4zxhoOJOW5tTMJaeutCeTBZG82odkkR77FtA84b5FsTEHiUt6twRRi4kxsCgFt9Q9IbFhLxdx2ueieORMKvvxdz7sv7999vr7t7z7efLi-uustk1z01nBNleKcKSmF0q7l01JyyxjM42gcGuekU0A1l4MyWloJRqKghm4GMQ7n3ZuTbwv3fcVSp50vFkMwEdNaJtDjoEcBUjT09V_ofVpzO96RUhwEo4NsFJwom1MpGd20ZL8z-TABnY6Pmv55VNOwk6Ysx-yY_3D-r-gX2iCXJQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Vikent’ev, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2017</creationdate><title>Analyzing model distances between expert propositions with differently ordered logical variables of knowledge base formulas and collective clustering</title><author>Vikent’ev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2645-ca48077442766578f6188664c221d99afeaff6f71084637a86c61a6e50a0b3593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Computer Science</topic><topic>Consumer goods</topic><topic>Formulas (mathematics)</topic><topic>Image analysis</topic><topic>Image Processing and Computer Vision</topic><topic>Knowledge</topic><topic>Knowledge base</topic><topic>Mathematical Method in Pattern Recognition</topic><topic>Mathematical models</topic><topic>Order disorder</topic><topic>Pattern Recognition</topic><topic>Real numbers</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vikent’ev, A. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vikent’ev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing model distances between expert propositions with differently ordered logical variables of knowledge base formulas and collective clustering</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2017</date><risdate>2017</risdate><volume>27</volume><issue>1</issue><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>This paper proves a theorem on the metrics taking into account the ordering (assigning of real numbers (0, 1) to variables of a formula) of elementary propositions in models by each expert and the degrees with which the models are scattered over the variables. This approach is proposed for the first time. Some examples demonstrating the novelty of the metrics are presented, and a method is proposed that allows a new metrics to be constructed based on previously obtained and/or already available metrics.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661817010175</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2017, Vol.27 (1), p.29-35
issn 1054-6618
1555-6212
language eng
recordid cdi_proquest_miscellaneous_1893895165
source Springer Nature - Complete Springer Journals
subjects Clustering
Computer Science
Consumer goods
Formulas (mathematics)
Image analysis
Image Processing and Computer Vision
Knowledge
Knowledge base
Mathematical Method in Pattern Recognition
Mathematical models
Order disorder
Pattern Recognition
Real numbers
Studies
Theorems
title Analyzing model distances between expert propositions with differently ordered logical variables of knowledge base formulas and collective clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20model%20distances%20between%20expert%20propositions%20with%20differently%20ordered%20logical%20variables%20of%20knowledge%20base%20formulas%20and%20collective%20clustering&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Vikent%E2%80%99ev,%20A.%20A.&rft.date=2017&rft.volume=27&rft.issue=1&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661817010175&rft_dat=%3Cproquest_cross%3E1893895165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874152036&rft_id=info:pmid/&rfr_iscdi=true