Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems
Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on R 2 and the solution on the square is regarded as a localization. For the numerical approxi...
Gespeichert in:
Veröffentlicht in: | Applications of mathematics (Prague) 2017-02, Vol.62 (1), p.15-36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Applications of mathematics (Prague) |
container_volume | 62 |
creator | Szekeres, Béla J. Izsák, Ferenc |
description | Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on R
2
and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments. |
doi_str_mv | 10.21136/AM.2017.0385-15 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893895086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893895086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p258t-9c1f3962626f4b42eedeaf6d1331621a459a4ffce0ea06e38f2f686be2ccc1473</originalsourceid><addsrcrecordid>eNpd0TlvwyAYBmBUtVLTY--I1KWLUw6DYYyiXlKiLu1sEfsjcWQbF-wqU397sZOhqhi4Hj4EL0J3lMwZpVw-LtZzRmg2J1yJhIozNKMiY4mmRJ-jGVGSJZlOySW6CmFPCNFSqRn6Wbr2G_wW2gKws7jfAW5M76sD7r1pg3U-TivX4gb6nStxXJiQrdqqB1xW1oKfTpuu8-5QnXisZb0pxrGpsfMl-AkPYdyNclNDE27QhTV1gNtTf40-n58-lq_J6v3lbblYJR0Tqk90QS3XksVm003KAEowVpaUcyoZNanQJrW2AAKGSODKMiuV3AArioKmGb9GD8e68eKvAUKfN1UooK5NC24IOVWaKy3iL0V6_4_u3eDjI0aVcaZEKtKo6FGFzlftFvwfRfIpkXyxzsdE8jGRnAr-C3q0gXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873285454</pqid></control><display><type>article</type><title>Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems</title><source>Springer Online Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Szekeres, Béla J. ; Izsák, Ferenc</creator><creatorcontrib>Szekeres, Béla J. ; Izsák, Ferenc</creatorcontrib><description>Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on R
2
and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.21136/AM.2017.0385-15</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applications of Mathematics ; Approximation ; Boundary conditions ; Calculus ; Classical and Continuum Physics ; Convergence ; Derivatives ; Diffusion ; Dirichlet problem ; Error analysis ; Experiments ; Finite difference method ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Measurement techniques ; Optimization ; Scholarships & fellowships ; Studies ; Theoretical</subject><ispartof>Applications of mathematics (Prague), 2017-02, Vol.62 (1), p.15-36</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017</rights><rights>Applications of Mathematics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p258t-9c1f3962626f4b42eedeaf6d1331621a459a4ffce0ea06e38f2f686be2ccc1473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.21136/AM.2017.0385-15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.21136/AM.2017.0385-15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Szekeres, Béla J.</creatorcontrib><creatorcontrib>Izsák, Ferenc</creatorcontrib><title>Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems</title><title>Applications of mathematics (Prague)</title><addtitle>Appl Math</addtitle><description>Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on R
2
and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Calculus</subject><subject>Classical and Continuum Physics</subject><subject>Convergence</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Dirichlet problem</subject><subject>Error analysis</subject><subject>Experiments</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Measurement techniques</subject><subject>Optimization</subject><subject>Scholarships & fellowships</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0TlvwyAYBmBUtVLTY--I1KWLUw6DYYyiXlKiLu1sEfsjcWQbF-wqU397sZOhqhi4Hj4EL0J3lMwZpVw-LtZzRmg2J1yJhIozNKMiY4mmRJ-jGVGSJZlOySW6CmFPCNFSqRn6Wbr2G_wW2gKws7jfAW5M76sD7r1pg3U-TivX4gb6nStxXJiQrdqqB1xW1oKfTpuu8-5QnXisZb0pxrGpsfMl-AkPYdyNclNDE27QhTV1gNtTf40-n58-lq_J6v3lbblYJR0Tqk90QS3XksVm003KAEowVpaUcyoZNanQJrW2AAKGSODKMiuV3AArioKmGb9GD8e68eKvAUKfN1UooK5NC24IOVWaKy3iL0V6_4_u3eDjI0aVcaZEKtKo6FGFzlftFvwfRfIpkXyxzsdE8jGRnAr-C3q0gXw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Szekeres, Béla J.</creator><creator>Izsák, Ferenc</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170201</creationdate><title>Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems</title><author>Szekeres, Béla J. ; Izsák, Ferenc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p258t-9c1f3962626f4b42eedeaf6d1331621a459a4ffce0ea06e38f2f686be2ccc1473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Calculus</topic><topic>Classical and Continuum Physics</topic><topic>Convergence</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Dirichlet problem</topic><topic>Error analysis</topic><topic>Experiments</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Measurement techniques</topic><topic>Optimization</topic><topic>Scholarships & fellowships</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szekeres, Béla J.</creatorcontrib><creatorcontrib>Izsák, Ferenc</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szekeres, Béla J.</au><au>Izsák, Ferenc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems</atitle><jtitle>Applications of mathematics (Prague)</jtitle><stitle>Appl Math</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>62</volume><issue>1</issue><spage>15</spage><epage>36</epage><pages>15-36</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on R
2
and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.21136/AM.2017.0385-15</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0862-7940 |
ispartof | Applications of mathematics (Prague), 2017-02, Vol.62 (1), p.15-36 |
issn | 0862-7940 1572-9109 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893895086 |
source | Springer Online Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analysis Applications of Mathematics Approximation Boundary conditions Calculus Classical and Continuum Physics Convergence Derivatives Diffusion Dirichlet problem Error analysis Experiments Finite difference method Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mathematics Mathematics and Statistics Measurement techniques Optimization Scholarships & fellowships Studies Theoretical |
title | Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20the%20matrix%20transformation%20method%20for%20the%20finite%20difference%20approximation%20of%20fractional%20order%20diffusion%20problems&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Szekeres,%20B%C3%A9la%20J.&rft.date=2017-02-01&rft.volume=62&rft.issue=1&rft.spage=15&rft.epage=36&rft.pages=15-36&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.21136/AM.2017.0385-15&rft_dat=%3Cproquest_sprin%3E1893895086%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1873285454&rft_id=info:pmid/&rfr_iscdi=true |