Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys

Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present rese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.1841-1855
Hauptverfasser: Gomes, Leonardo F., Silva, Bismarck L., Garcia, Amauri, Spinelli, José E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1855
container_issue 4
container_start_page 1841
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 48
creator Gomes, Leonardo F.
Silva, Bismarck L.
Garcia, Amauri
Spinelli, José E.
description Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1 , and secondary, λ 2 , dendrite arm spacings with cooling rate ( T ˙ L ) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall–Petch type formulas show that the tensile strength increases with the decrease in λ 2 . The soundest strength–ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth ( V L ) and cooling rates ( T ˙ L ) for both ternary Al-Mg-Fe alloys have also been derived.
doi_str_mv 10.1007/s11661-017-3978-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893894883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4318028011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e5d74c3e44eb424e99dcfd0da9e2bf1b292c38548ee28c2e2abc930557790b543</originalsourceid><addsrcrecordid>eNp1kU1rGzEQhpfSQNOkP6A3QS89RIm-diUdjfMJCTHEpUeh1c7aCmvJkWRCrvnlUXAPJZDTDMPzDsM8TfOTklNKiDzLlHYdxYRKzLVUmHxpDmkrOKZakK-1J5LjtmP8W_M950dCCNW8O2xezyEMyRfv0FWKz2V9gh7i5Ac_emeLjwEt15A2dkILm-wGCqR8gmwY0N0KzWMoEAqajSO44sMKlTWgJYTsJ0CLFLeQioeM4ohmE75bYXraor8FLVxBl1BnU3zJx83BaKcMP_7Vo-bP5cVyfo1v769u5rNb7LhmBUM7SOE4CAG9YAK0Htw4kMFqYP1Ie6aZ46oVCoApx4DZ3mlO2lZKTfr6iqPm937vNsWnHeRiNj47mCYbIO6yoUpzpYVSvKK_PqCPcZdCva5SUhBBZKcqRfeUSzHnBKPZJr-x6cVQYt6tmL0VU62YdyuG1AzbZ3JlwwrSf5s_Db0B8miOrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874040768</pqid></control><display><type>article</type><title>Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gomes, Leonardo F. ; Silva, Bismarck L. ; Garcia, Amauri ; Spinelli, José E.</creator><creatorcontrib>Gomes, Leonardo F. ; Silva, Bismarck L. ; Garcia, Amauri ; Spinelli, José E.</creatorcontrib><description>Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1 , and secondary, λ 2 , dendrite arm spacings with cooling rate ( T ˙ L ) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall–Petch type formulas show that the tensile strength increases with the decrease in λ 2 . The soundest strength–ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth ( V L ) and cooling rates ( T ˙ L ) for both ternary Al-Mg-Fe alloys have also been derived.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-017-3978-0</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy solidification ; Alloys ; Aluminum ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cooling rate ; Ferrous alloys ; Materials Science ; Metallic Materials ; Metallurgy ; Microstructure ; Nanotechnology ; Physical metallurgy ; Solidification ; Structural Materials ; Surfaces and Interfaces ; Tensile properties ; Tensile strength ; Thermal properties ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.1841-1855</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2017</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e5d74c3e44eb424e99dcfd0da9e2bf1b292c38548ee28c2e2abc930557790b543</citedby><cites>FETCH-LOGICAL-c392t-e5d74c3e44eb424e99dcfd0da9e2bf1b292c38548ee28c2e2abc930557790b543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-017-3978-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-017-3978-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gomes, Leonardo F.</creatorcontrib><creatorcontrib>Silva, Bismarck L.</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Spinelli, José E.</creatorcontrib><title>Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1 , and secondary, λ 2 , dendrite arm spacings with cooling rate ( T ˙ L ) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall–Petch type formulas show that the tensile strength increases with the decrease in λ 2 . The soundest strength–ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth ( V L ) and cooling rates ( T ˙ L ) for both ternary Al-Mg-Fe alloys have also been derived.</description><subject>Alloy solidification</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cooling rate</subject><subject>Ferrous alloys</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Physical metallurgy</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tensile properties</subject><subject>Tensile strength</subject><subject>Thermal properties</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1rGzEQhpfSQNOkP6A3QS89RIm-diUdjfMJCTHEpUeh1c7aCmvJkWRCrvnlUXAPJZDTDMPzDsM8TfOTklNKiDzLlHYdxYRKzLVUmHxpDmkrOKZakK-1J5LjtmP8W_M950dCCNW8O2xezyEMyRfv0FWKz2V9gh7i5Ac_emeLjwEt15A2dkILm-wGCqR8gmwY0N0KzWMoEAqajSO44sMKlTWgJYTsJ0CLFLeQioeM4ohmE75bYXraor8FLVxBl1BnU3zJx83BaKcMP_7Vo-bP5cVyfo1v769u5rNb7LhmBUM7SOE4CAG9YAK0Htw4kMFqYP1Ie6aZ46oVCoApx4DZ3mlO2lZKTfr6iqPm937vNsWnHeRiNj47mCYbIO6yoUpzpYVSvKK_PqCPcZdCva5SUhBBZKcqRfeUSzHnBKPZJr-x6cVQYt6tmL0VU62YdyuG1AzbZ3JlwwrSf5s_Db0B8miOrA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Gomes, Leonardo F.</creator><creator>Silva, Bismarck L.</creator><creator>Garcia, Amauri</creator><creator>Spinelli, José E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20170401</creationdate><title>Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys</title><author>Gomes, Leonardo F. ; Silva, Bismarck L. ; Garcia, Amauri ; Spinelli, José E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e5d74c3e44eb424e99dcfd0da9e2bf1b292c38548ee28c2e2abc930557790b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloy solidification</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cooling rate</topic><topic>Ferrous alloys</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Physical metallurgy</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tensile properties</topic><topic>Tensile strength</topic><topic>Thermal properties</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, Leonardo F.</creatorcontrib><creatorcontrib>Silva, Bismarck L.</creatorcontrib><creatorcontrib>Garcia, Amauri</creatorcontrib><creatorcontrib>Spinelli, José E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, Leonardo F.</au><au>Silva, Bismarck L.</au><au>Garcia, Amauri</au><au>Spinelli, José E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>48</volume><issue>4</issue><spage>1841</spage><epage>1855</epage><pages>1841-1855</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>Al-Mg-Fe alloys are appointed as favorable ones with respect to the costs and all the required properties for successful vessel service. However, the experimental inter-relations of solidification thermal parameters, microstructure, and mechanical strength are still undetermined. In the present research work, the dependences of tensile properties on the length scale of the dendritic morphology of ternary Al-1.2 wt pct Mg-1.5 wt pct Fe and Al-7 wt pct Mg-1.5 wt pct Fe alloys are examined. Transient heat flow conditions during solidification have been achieved by the use of a directional solidification system, thus permitting a comprehensive characterization of the dendritic microstructures to be performed. Thermo-Calc computations, X-ray diffraction, and scanning electron microscopy analyses are carried out to give support to the extensive microstructural evaluation performed with both ternary Al-Mg-Fe alloys. Experimental growth relations of primary, λ 1 , and secondary, λ 2 , dendrite arm spacings with cooling rate ( T ˙ L ) and of tensile properties with λ 2 are proposed. For both alloys examined, Hall–Petch type formulas show that the tensile strength increases with the decrease in λ 2 . The soundest strength–ductility balance is exhibited by the Al-7 wt pct Mg-1.5 wt pct Fe alloy specimen with refined microstructure. This is shown to be due to a more homogeneous distribution of intermetallic particles in connection with solid solution strengthening propitiated by Mg. Functional experimental inter-relations of tensile properties with growth ( V L ) and cooling rates ( T ˙ L ) for both ternary Al-Mg-Fe alloys have also been derived.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-017-3978-0</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.1841-1855
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1893894883
source SpringerLink Journals - AutoHoldings
subjects Alloy solidification
Alloys
Aluminum
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cooling rate
Ferrous alloys
Materials Science
Metallic Materials
Metallurgy
Microstructure
Nanotechnology
Physical metallurgy
Solidification
Structural Materials
Surfaces and Interfaces
Tensile properties
Tensile strength
Thermal properties
Thin Films
title Dendritic Growth, Solidification Thermal Parameters, and Mg Content Affecting the Tensile Properties of Al-Mg-1.5 Wt Pct Fe Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dendritic%20Growth,%20Solidification%20Thermal%20Parameters,%20and%20Mg%20Content%20Affecting%20the%20Tensile%20Properties%20of%20Al-Mg-1.5%20Wt%20Pct%20Fe%20Alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Gomes,%20Leonardo%20F.&rft.date=2017-04-01&rft.volume=48&rft.issue=4&rft.spage=1841&rft.epage=1855&rft.pages=1841-1855&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-017-3978-0&rft_dat=%3Cproquest_cross%3E4318028011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874040768&rft_id=info:pmid/&rfr_iscdi=true