Kinetic study of anti-HIV drugs by thermal decomposition analysis

Kinetic study by thermal decomposition of antiretroviral drugs, efavirenz (EFV) and lamivudine (3TC), usually present in the HIV cocktail, can be done by individual adjustment of the solid decomposition models. However, in some cases, unacceptable errors are found using this methodology. To circumve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2017-01, Vol.127 (1), p.577-585
Hauptverfasser: Ferreira, B. D. L, Araujo, B. C. R, Sebastião, R. C. O, Yoshida, M. I, Mussel, W. N, Fialho, S. L, Barbosa, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 1
container_start_page 577
container_title Journal of thermal analysis and calorimetry
container_volume 127
creator Ferreira, B. D. L
Araujo, B. C. R
Sebastião, R. C. O
Yoshida, M. I
Mussel, W. N
Fialho, S. L
Barbosa, J
description Kinetic study by thermal decomposition of antiretroviral drugs, efavirenz (EFV) and lamivudine (3TC), usually present in the HIV cocktail, can be done by individual adjustment of the solid decomposition models. However, in some cases, unacceptable errors are found using this methodology. To circumvent this problem, here is proposed to use a multilayer perceptron neural network, with an appropriate algorithm, which constitutes a linearization of the network by setting weights between the input layer and the intermediate one and the use of kinetic models as activation functions of neurons in the hidden layer. The interconnection weights between that intermediate layer and output layer determine the contribution of each model in the overall fit of the experimental data. Thus, the decomposition is assumed to be a phenomenon that can occur following different kinetic processes. In investigated data, the kinetic thermal decomposition process was best described by R sub(1) and D sub(4) models for all temperatures to EFV and 3TC, respectively. The residual error of adjustment over the network is on average 10 super(3) times lower for EFV and 10 super(2) times lower for 3TC compared to the best individual kinetic model. These improvements in physical adjustment allow detailed study of the process and therefore a more accurate calculation of the kinetic parameters such as the activation energy and frequency factor. It was found \(E_{\text{a}} = 75.230\,{\text{kJ}}\,{\text{mol}} super({ - 1})\) and \(\ln \left( A \right) = 3.2190 \times 10 super({ - 16}) \,{\text{s}} super({ - 1})\) for EFV and \(E_{\text{a}} = 103.25\,{\text{kJ}}\,{\text{mol}} super({ - 1})\) and \(\ln \left( A \right) = 2.5587 \times 10 super({ - 3}) \,{\text{s}} super({ - 1})\) for 3TC.
doi_str_mv 10.1007/s10973-016-5855-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893894857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A551029976</galeid><sourcerecordid>A551029976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-1f497967d4501496f03f8f4d8dd83809a4d0b34d988ec42f2830167bcc8e3c553</originalsourceid><addsrcrecordid>eNqN0MlKBDEQBuBGFByXB_DW4EUPGbN0OpXjIC6DguB2bTJZxgw9He2kwXl7Myq44EHqkCJ89UNVURwQPCYYi5NIsBQMYVIjDpwjulGMCAdAVNJ6M_cs9zXheLvYiXGBMZYSk1ExufKdTV6XMQ1mVQZXqi55dDl9LE0_zGM5W5XpyfZL1ZbG6rB8DtEnH7rsVLuKPu4VW0610e5_vrvFw_nZ_eklur65mJ5OrpFmFBIirpJC1sJUHJNK1g4zB64yYAwwwFJVBs9YZSSA1RV1FFheRsy0Bss052y3OPrIfe7Dy2BjapY-atu2qrNhiA0ByUBWwMU_KICsqaB1poe_6CIMfV7tXWGRryTgS81VaxvfuZB6pdehzYRzgqmUYp01_kPlMnbpdeis8_n_x8Dxj4Fskn1NczXE2Ezvbr_bN5qaj9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880799078</pqid></control><display><type>article</type><title>Kinetic study of anti-HIV drugs by thermal decomposition analysis</title><source>SpringerNature Journals</source><creator>Ferreira, B. D. L ; Araujo, B. C. R ; Sebastião, R. C. O ; Yoshida, M. I ; Mussel, W. N ; Fialho, S. L ; Barbosa, J</creator><creatorcontrib>Ferreira, B. D. L ; Araujo, B. C. R ; Sebastião, R. C. O ; Yoshida, M. I ; Mussel, W. N ; Fialho, S. L ; Barbosa, J</creatorcontrib><description>Kinetic study by thermal decomposition of antiretroviral drugs, efavirenz (EFV) and lamivudine (3TC), usually present in the HIV cocktail, can be done by individual adjustment of the solid decomposition models. However, in some cases, unacceptable errors are found using this methodology. To circumvent this problem, here is proposed to use a multilayer perceptron neural network, with an appropriate algorithm, which constitutes a linearization of the network by setting weights between the input layer and the intermediate one and the use of kinetic models as activation functions of neurons in the hidden layer. The interconnection weights between that intermediate layer and output layer determine the contribution of each model in the overall fit of the experimental data. Thus, the decomposition is assumed to be a phenomenon that can occur following different kinetic processes. In investigated data, the kinetic thermal decomposition process was best described by R sub(1) and D sub(4) models for all temperatures to EFV and 3TC, respectively. The residual error of adjustment over the network is on average 10 super(3) times lower for EFV and 10 super(2) times lower for 3TC compared to the best individual kinetic model. These improvements in physical adjustment allow detailed study of the process and therefore a more accurate calculation of the kinetic parameters such as the activation energy and frequency factor. It was found \(E_{\text{a}} = 75.230\,{\text{kJ}}\,{\text{mol}} super({ - 1})\) and \(\ln \left( A \right) = 3.2190 \times 10 super({ - 16}) \,{\text{s}} super({ - 1})\) for EFV and \(E_{\text{a}} = 103.25\,{\text{kJ}}\,{\text{mol}} super({ - 1})\) and \(\ln \left( A \right) = 2.5587 \times 10 super({ - 3}) \,{\text{s}} super({ - 1})\) for 3TC.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>EISSN: 1572-8943</identifier><identifier>DOI: 10.1007/s10973-016-5855-2</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Activation energy ; Adjustment ; Algorithms ; Analysis ; Antiretroviral drugs ; Artificial neural networks ; Calorimetry ; Decomposition ; Drug therapy ; Drugs ; Highly active antiretroviral therapy ; HIV ; Human immunodeficiency virus ; Lamivudine ; Lentivirus ; Mathematical models ; Multilayer perceptrons ; Networks ; Neural networks ; Neurons ; Retroviridae ; Thermal decomposition</subject><ispartof>Journal of thermal analysis and calorimetry, 2017-01, Vol.127 (1), p.577-585</ispartof><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-1f497967d4501496f03f8f4d8dd83809a4d0b34d988ec42f2830167bcc8e3c553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ferreira, B. D. L</creatorcontrib><creatorcontrib>Araujo, B. C. R</creatorcontrib><creatorcontrib>Sebastião, R. C. O</creatorcontrib><creatorcontrib>Yoshida, M. I</creatorcontrib><creatorcontrib>Mussel, W. N</creatorcontrib><creatorcontrib>Fialho, S. L</creatorcontrib><creatorcontrib>Barbosa, J</creatorcontrib><title>Kinetic study of anti-HIV drugs by thermal decomposition analysis</title><title>Journal of thermal analysis and calorimetry</title><description>Kinetic study by thermal decomposition of antiretroviral drugs, efavirenz (EFV) and lamivudine (3TC), usually present in the HIV cocktail, can be done by individual adjustment of the solid decomposition models. However, in some cases, unacceptable errors are found using this methodology. To circumvent this problem, here is proposed to use a multilayer perceptron neural network, with an appropriate algorithm, which constitutes a linearization of the network by setting weights between the input layer and the intermediate one and the use of kinetic models as activation functions of neurons in the hidden layer. The interconnection weights between that intermediate layer and output layer determine the contribution of each model in the overall fit of the experimental data. Thus, the decomposition is assumed to be a phenomenon that can occur following different kinetic processes. In investigated data, the kinetic thermal decomposition process was best described by R sub(1) and D sub(4) models for all temperatures to EFV and 3TC, respectively. The residual error of adjustment over the network is on average 10 super(3) times lower for EFV and 10 super(2) times lower for 3TC compared to the best individual kinetic model. These improvements in physical adjustment allow detailed study of the process and therefore a more accurate calculation of the kinetic parameters such as the activation energy and frequency factor. It was found \(E_{\text{a}} = 75.230\,{\text{kJ}}\,{\text{mol}} super({ - 1})\) and \(\ln \left( A \right) = 3.2190 \times 10 super({ - 16}) \,{\text{s}} super({ - 1})\) for EFV and \(E_{\text{a}} = 103.25\,{\text{kJ}}\,{\text{mol}} super({ - 1})\) and \(\ln \left( A \right) = 2.5587 \times 10 super({ - 3}) \,{\text{s}} super({ - 1})\) for 3TC.</description><subject>Activation energy</subject><subject>Adjustment</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Antiretroviral drugs</subject><subject>Artificial neural networks</subject><subject>Calorimetry</subject><subject>Decomposition</subject><subject>Drug therapy</subject><subject>Drugs</subject><subject>Highly active antiretroviral therapy</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Lamivudine</subject><subject>Lentivirus</subject><subject>Mathematical models</subject><subject>Multilayer perceptrons</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Retroviridae</subject><subject>Thermal decomposition</subject><issn>1388-6150</issn><issn>1588-2926</issn><issn>1572-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0MlKBDEQBuBGFByXB_DW4EUPGbN0OpXjIC6DguB2bTJZxgw9He2kwXl7Myq44EHqkCJ89UNVURwQPCYYi5NIsBQMYVIjDpwjulGMCAdAVNJ6M_cs9zXheLvYiXGBMZYSk1ExufKdTV6XMQ1mVQZXqi55dDl9LE0_zGM5W5XpyfZL1ZbG6rB8DtEnH7rsVLuKPu4VW0610e5_vrvFw_nZ_eklur65mJ5OrpFmFBIirpJC1sJUHJNK1g4zB64yYAwwwFJVBs9YZSSA1RV1FFheRsy0Bss052y3OPrIfe7Dy2BjapY-atu2qrNhiA0ByUBWwMU_KICsqaB1poe_6CIMfV7tXWGRryTgS81VaxvfuZB6pdehzYRzgqmUYp01_kPlMnbpdeis8_n_x8Dxj4Fskn1NczXE2Ezvbr_bN5qaj9o</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Ferreira, B. D. L</creator><creator>Araujo, B. C. R</creator><creator>Sebastião, R. C. O</creator><creator>Yoshida, M. I</creator><creator>Mussel, W. N</creator><creator>Fialho, S. L</creator><creator>Barbosa, J</creator><general>Springer</general><general>Springer Nature B.V</general><scope>ISR</scope><scope>7U9</scope><scope>H94</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170101</creationdate><title>Kinetic study of anti-HIV drugs by thermal decomposition analysis</title><author>Ferreira, B. D. L ; Araujo, B. C. R ; Sebastião, R. C. O ; Yoshida, M. I ; Mussel, W. N ; Fialho, S. L ; Barbosa, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-1f497967d4501496f03f8f4d8dd83809a4d0b34d988ec42f2830167bcc8e3c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Adjustment</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Antiretroviral drugs</topic><topic>Artificial neural networks</topic><topic>Calorimetry</topic><topic>Decomposition</topic><topic>Drug therapy</topic><topic>Drugs</topic><topic>Highly active antiretroviral therapy</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Lamivudine</topic><topic>Lentivirus</topic><topic>Mathematical models</topic><topic>Multilayer perceptrons</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Retroviridae</topic><topic>Thermal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, B. D. L</creatorcontrib><creatorcontrib>Araujo, B. C. R</creatorcontrib><creatorcontrib>Sebastião, R. C. O</creatorcontrib><creatorcontrib>Yoshida, M. I</creatorcontrib><creatorcontrib>Mussel, W. N</creatorcontrib><creatorcontrib>Fialho, S. L</creatorcontrib><creatorcontrib>Barbosa, J</creatorcontrib><collection>Gale In Context: Science</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, B. D. L</au><au>Araujo, B. C. R</au><au>Sebastião, R. C. O</au><au>Yoshida, M. I</au><au>Mussel, W. N</au><au>Fialho, S. L</au><au>Barbosa, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic study of anti-HIV drugs by thermal decomposition analysis</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>127</volume><issue>1</issue><spage>577</spage><epage>585</epage><pages>577-585</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><eissn>1572-8943</eissn><abstract>Kinetic study by thermal decomposition of antiretroviral drugs, efavirenz (EFV) and lamivudine (3TC), usually present in the HIV cocktail, can be done by individual adjustment of the solid decomposition models. However, in some cases, unacceptable errors are found using this methodology. To circumvent this problem, here is proposed to use a multilayer perceptron neural network, with an appropriate algorithm, which constitutes a linearization of the network by setting weights between the input layer and the intermediate one and the use of kinetic models as activation functions of neurons in the hidden layer. The interconnection weights between that intermediate layer and output layer determine the contribution of each model in the overall fit of the experimental data. Thus, the decomposition is assumed to be a phenomenon that can occur following different kinetic processes. In investigated data, the kinetic thermal decomposition process was best described by R sub(1) and D sub(4) models for all temperatures to EFV and 3TC, respectively. The residual error of adjustment over the network is on average 10 super(3) times lower for EFV and 10 super(2) times lower for 3TC compared to the best individual kinetic model. These improvements in physical adjustment allow detailed study of the process and therefore a more accurate calculation of the kinetic parameters such as the activation energy and frequency factor. It was found \(E_{\text{a}} = 75.230\,{\text{kJ}}\,{\text{mol}} super({ - 1})\) and \(\ln \left( A \right) = 3.2190 \times 10 super({ - 16}) \,{\text{s}} super({ - 1})\) for EFV and \(E_{\text{a}} = 103.25\,{\text{kJ}}\,{\text{mol}} super({ - 1})\) and \(\ln \left( A \right) = 2.5587 \times 10 super({ - 3}) \,{\text{s}} super({ - 1})\) for 3TC.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s10973-016-5855-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2017-01, Vol.127 (1), p.577-585
issn 1388-6150
1588-2926
1572-8943
language eng
recordid cdi_proquest_miscellaneous_1893894857
source SpringerNature Journals
subjects Activation energy
Adjustment
Algorithms
Analysis
Antiretroviral drugs
Artificial neural networks
Calorimetry
Decomposition
Drug therapy
Drugs
Highly active antiretroviral therapy
HIV
Human immunodeficiency virus
Lamivudine
Lentivirus
Mathematical models
Multilayer perceptrons
Networks
Neural networks
Neurons
Retroviridae
Thermal decomposition
title Kinetic study of anti-HIV drugs by thermal decomposition analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20study%20of%20anti-HIV%20drugs%20by%20thermal%20decomposition%20analysis&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Ferreira,%20B.%20D.%20L&rft.date=2017-01-01&rft.volume=127&rft.issue=1&rft.spage=577&rft.epage=585&rft.pages=577-585&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-016-5855-2&rft_dat=%3Cgale_proqu%3EA551029976%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880799078&rft_id=info:pmid/&rft_galeid=A551029976&rfr_iscdi=true