Degradation adaptive texture classification for real-world application scenarios
Images captured under non-laboratory conditions potentially suffer from various degradations. Especially noise, blur and scale-variations are often prevalent in real world images and are known to potentially affect the classification process of textured images. We show that these degradations not ne...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2017, Vol.27 (1), p.66-81 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | Pattern recognition and image analysis |
container_volume | 27 |
creator | Gadermayr, M. Merhof, D. Vécsei, A. Uhl, A. |
description | Images captured under non-laboratory conditions potentially suffer from various degradations. Especially noise, blur and scale-variations are often prevalent in real world images and are known to potentially affect the classification process of textured images. We show that these degradations not necessarily strongly affect the discriminative powers of computer based classifiers in a scenario with similar degradations in training and evaluation set. We propose a degradation-adaptive classification approach, which exploits this knowledge by dividing one large data set into several smaller ones, each containing images with some kind of degradation-similarity. In a large experimental study, it can be shown that our method continuously enhances the classification accuracies in case of simulated as well as real world image degradations. Surprisingly, by means of a pre-classification, the framework turns out to be beneficial even in case of idealistic images which are free from strong degradations. |
doi_str_mv | 10.1134/S1054661817010035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893894520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4318500561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2645-cc8fc5f93a62aaf5f8c032de62123d0e70a794efcaeec9a5414319a1a2aa0c6c3</originalsourceid><addsrcrecordid>eNp1kEtLxEAQhAdRcF39Ad4CXrxEp-eRx1HWJywoqOfQTHqWLNlMnEl8_HtniYIonqqhvmqKYuwY-BmAVOePwLXKMigg58C51DtsBlrrNBMgduMd7XTr77ODENac8wJKMWMPl7TyWOPQuC6J2g_NKyUDvQ-jp8S0GEJjGzP51vnEE7bpm_NtnWDft99WMNShb1w4ZHsW20BHXzpnz9dXT4vbdHl_c7e4WKZGZEqnxhTWaFtKzASi1bYwXIqatnVlzSnnmJeKrEEiU6JWoCSUCBhpbjIj5-x0-tt79zJSGKpNE0u0LXbkxlBBUcqiVFrwiJ78Qtdu9F1sF6lcQWR4FimYKONdCJ5s1ftmg_6jAl5tN67-bBwzYsqEyHYr8j8-_xv6BCTVfns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874152006</pqid></control><display><type>article</type><title>Degradation adaptive texture classification for real-world application scenarios</title><source>Springer Nature - Complete Springer Journals</source><creator>Gadermayr, M. ; Merhof, D. ; Vécsei, A. ; Uhl, A.</creator><creatorcontrib>Gadermayr, M. ; Merhof, D. ; Vécsei, A. ; Uhl, A.</creatorcontrib><description>Images captured under non-laboratory conditions potentially suffer from various degradations. Especially noise, blur and scale-variations are often prevalent in real world images and are known to potentially affect the classification process of textured images. We show that these degradations not necessarily strongly affect the discriminative powers of computer based classifiers in a scenario with similar degradations in training and evaluation set. We propose a degradation-adaptive classification approach, which exploits this knowledge by dividing one large data set into several smaller ones, each containing images with some kind of degradation-similarity. In a large experimental study, it can be shown that our method continuously enhances the classification accuracies in case of simulated as well as real world image degradations. Surprisingly, by means of a pre-classification, the framework turns out to be beneficial even in case of idealistic images which are free from strong degradations.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661817010035</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applied Problems ; Classification ; Computer Science ; Computer simulation ; Degradation ; Image classification ; Image Processing and Computer Vision ; Image processing systems ; Noise ; Pattern Recognition ; Studies ; Surface layer ; Texture</subject><ispartof>Pattern recognition and image analysis, 2017, Vol.27 (1), p.66-81</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Pattern Recognition and Image Analysis is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2645-cc8fc5f93a62aaf5f8c032de62123d0e70a794efcaeec9a5414319a1a2aa0c6c3</citedby><cites>FETCH-LOGICAL-c2645-cc8fc5f93a62aaf5f8c032de62123d0e70a794efcaeec9a5414319a1a2aa0c6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661817010035$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661817010035$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Gadermayr, M.</creatorcontrib><creatorcontrib>Merhof, D.</creatorcontrib><creatorcontrib>Vécsei, A.</creatorcontrib><creatorcontrib>Uhl, A.</creatorcontrib><title>Degradation adaptive texture classification for real-world application scenarios</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>Images captured under non-laboratory conditions potentially suffer from various degradations. Especially noise, blur and scale-variations are often prevalent in real world images and are known to potentially affect the classification process of textured images. We show that these degradations not necessarily strongly affect the discriminative powers of computer based classifiers in a scenario with similar degradations in training and evaluation set. We propose a degradation-adaptive classification approach, which exploits this knowledge by dividing one large data set into several smaller ones, each containing images with some kind of degradation-similarity. In a large experimental study, it can be shown that our method continuously enhances the classification accuracies in case of simulated as well as real world image degradations. Surprisingly, by means of a pre-classification, the framework turns out to be beneficial even in case of idealistic images which are free from strong degradations.</description><subject>Applied Problems</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Image processing systems</subject><subject>Noise</subject><subject>Pattern Recognition</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texture</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxEAQhAdRcF39Ad4CXrxEp-eRx1HWJywoqOfQTHqWLNlMnEl8_HtniYIonqqhvmqKYuwY-BmAVOePwLXKMigg58C51DtsBlrrNBMgduMd7XTr77ODENac8wJKMWMPl7TyWOPQuC6J2g_NKyUDvQ-jp8S0GEJjGzP51vnEE7bpm_NtnWDft99WMNShb1w4ZHsW20BHXzpnz9dXT4vbdHl_c7e4WKZGZEqnxhTWaFtKzASi1bYwXIqatnVlzSnnmJeKrEEiU6JWoCSUCBhpbjIj5-x0-tt79zJSGKpNE0u0LXbkxlBBUcqiVFrwiJ78Qtdu9F1sF6lcQWR4FimYKONdCJ5s1ftmg_6jAl5tN67-bBwzYsqEyHYr8j8-_xv6BCTVfns</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Gadermayr, M.</creator><creator>Merhof, D.</creator><creator>Vécsei, A.</creator><creator>Uhl, A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2017</creationdate><title>Degradation adaptive texture classification for real-world application scenarios</title><author>Gadermayr, M. ; Merhof, D. ; Vécsei, A. ; Uhl, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2645-cc8fc5f93a62aaf5f8c032de62123d0e70a794efcaeec9a5414319a1a2aa0c6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied Problems</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Image processing systems</topic><topic>Noise</topic><topic>Pattern Recognition</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadermayr, M.</creatorcontrib><creatorcontrib>Merhof, D.</creatorcontrib><creatorcontrib>Vécsei, A.</creatorcontrib><creatorcontrib>Uhl, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadermayr, M.</au><au>Merhof, D.</au><au>Vécsei, A.</au><au>Uhl, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation adaptive texture classification for real-world application scenarios</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2017</date><risdate>2017</risdate><volume>27</volume><issue>1</issue><spage>66</spage><epage>81</epage><pages>66-81</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>Images captured under non-laboratory conditions potentially suffer from various degradations. Especially noise, blur and scale-variations are often prevalent in real world images and are known to potentially affect the classification process of textured images. We show that these degradations not necessarily strongly affect the discriminative powers of computer based classifiers in a scenario with similar degradations in training and evaluation set. We propose a degradation-adaptive classification approach, which exploits this knowledge by dividing one large data set into several smaller ones, each containing images with some kind of degradation-similarity. In a large experimental study, it can be shown that our method continuously enhances the classification accuracies in case of simulated as well as real world image degradations. Surprisingly, by means of a pre-classification, the framework turns out to be beneficial even in case of idealistic images which are free from strong degradations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661817010035</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2017, Vol.27 (1), p.66-81 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893894520 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied Problems Classification Computer Science Computer simulation Degradation Image classification Image Processing and Computer Vision Image processing systems Noise Pattern Recognition Studies Surface layer Texture |
title | Degradation adaptive texture classification for real-world application scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20adaptive%20texture%20classification%20for%20real-world%20application%20scenarios&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Gadermayr,%20M.&rft.date=2017&rft.volume=27&rft.issue=1&rft.spage=66&rft.epage=81&rft.pages=66-81&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661817010035&rft_dat=%3Cproquest_cross%3E4318500561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874152006&rft_id=info:pmid/&rfr_iscdi=true |