Geospatial data: a key ingredient for Swiss Re’s underwriting and service tools

As a leading global reinsurer, Swiss Re deals with many hazards and risks for which geospatial data are crucial in order to obtain reliable assessments of expected insured losses or large losses from catastrophes. Typically, such data are used in combination with insurance data either in pricing too...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural hazards (Dordrecht) 2017-03, Vol.86 (Suppl 1), p.197-198
1. Verfasser: Hausmann, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue Suppl 1
container_start_page 197
container_title Natural hazards (Dordrecht)
container_volume 86
creator Hausmann, Peter
description As a leading global reinsurer, Swiss Re deals with many hazards and risks for which geospatial data are crucial in order to obtain reliable assessments of expected insured losses or large losses from catastrophes. Typically, such data are used in combination with insurance data either in pricing tools to calculate premiums, tail risks and more, or in mapping tools. In natural perils pricing applications—the most important group of tools—geospatial data are usually “not visible” but are instead used to create probabilistic event sets. For example, a flood event set may define spatially if and how frequently a given location is flooded. Mapping tools, such as Swiss Re’s CatNet ® ( www.swissre.com/catnet ), visualize the data in the form of maps which include many useful attributes per geographic location.
doi_str_mv 10.1007/s11069-016-2642-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893892343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085653577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-31b0183a0b5c9f19fc6c562d0cc1a59ed8f3f8fd7fa3a218bf7dc9cff63ba7e73</originalsourceid><addsrcrecordid>eNqNkc9KAzEQh4MoWKsP4C3gxcvqTLK7SbyJaBUK4j_wFrLZpGzd7tZka-nN1_D1fBK3VBAEwbnM5fv9huEj5BDhBAHEaUSEXCWAecLylCWwRQaYCZ6ATGGbDEAxTIDD8y7Zi3EKgJgzNSB3I9fGuekqU9PSdOaMGvriVrRqJsGVlWs66ttAH5ZVjPTefb5_RLpoSheWoep6iJqmpNGFt8o62rVtHffJjjd1dAffe0ieri4fL66T8e3o5uJ8nFjO0y7hWABKbqDIrPKovM1tlrMSrEWTKVdKz730pfCGG4ay8KK0ynqf88IIJ_iQHG9656F9XbjY6VkVratr07h2ETVKxaViPOX_QIWQDPvp0aNf6LRdhKZ_RDOQWZ7xTKxv44ayoY0xOK_noZqZsNIIeu1Db3zo3ode-9DQZ9gmE3u2mbjw0_x36AtQ7o48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085653577</pqid></control><display><type>article</type><title>Geospatial data: a key ingredient for Swiss Re’s underwriting and service tools</title><source>SpringerLink (Online service)</source><creator>Hausmann, Peter</creator><creatorcontrib>Hausmann, Peter</creatorcontrib><description>As a leading global reinsurer, Swiss Re deals with many hazards and risks for which geospatial data are crucial in order to obtain reliable assessments of expected insured losses or large losses from catastrophes. Typically, such data are used in combination with insurance data either in pricing tools to calculate premiums, tail risks and more, or in mapping tools. In natural perils pricing applications—the most important group of tools—geospatial data are usually “not visible” but are instead used to create probabilistic event sets. For example, a flood event set may define spatially if and how frequently a given location is flooded. Mapping tools, such as Swiss Re’s CatNet ® ( www.swissre.com/catnet ), visualize the data in the form of maps which include many useful attributes per geographic location.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-016-2642-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Catastrophes ; Civil Engineering ; Data ; Disasters ; Earth and Environmental Science ; Earth Sciences ; Environmental Management ; Floods ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hazards ; Hydrogeology ; Insured losses ; Mapping ; Market prices ; Mathematical analysis ; Natural Hazards ; Original Paper ; Pricing ; Reinsurance ; Risk ; Spatial data ; Underwriting</subject><ispartof>Natural hazards (Dordrecht), 2017-03, Vol.86 (Suppl 1), p.197-198</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Natural Hazards is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7429-736X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-016-2642-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-016-2642-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hausmann, Peter</creatorcontrib><title>Geospatial data: a key ingredient for Swiss Re’s underwriting and service tools</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>As a leading global reinsurer, Swiss Re deals with many hazards and risks for which geospatial data are crucial in order to obtain reliable assessments of expected insured losses or large losses from catastrophes. Typically, such data are used in combination with insurance data either in pricing tools to calculate premiums, tail risks and more, or in mapping tools. In natural perils pricing applications—the most important group of tools—geospatial data are usually “not visible” but are instead used to create probabilistic event sets. For example, a flood event set may define spatially if and how frequently a given location is flooded. Mapping tools, such as Swiss Re’s CatNet ® ( www.swissre.com/catnet ), visualize the data in the form of maps which include many useful attributes per geographic location.</description><subject>Catastrophes</subject><subject>Civil Engineering</subject><subject>Data</subject><subject>Disasters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Management</subject><subject>Floods</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hazards</subject><subject>Hydrogeology</subject><subject>Insured losses</subject><subject>Mapping</subject><subject>Market prices</subject><subject>Mathematical analysis</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Pricing</subject><subject>Reinsurance</subject><subject>Risk</subject><subject>Spatial data</subject><subject>Underwriting</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc9KAzEQh4MoWKsP4C3gxcvqTLK7SbyJaBUK4j_wFrLZpGzd7tZka-nN1_D1fBK3VBAEwbnM5fv9huEj5BDhBAHEaUSEXCWAecLylCWwRQaYCZ6ATGGbDEAxTIDD8y7Zi3EKgJgzNSB3I9fGuekqU9PSdOaMGvriVrRqJsGVlWs66ttAH5ZVjPTefb5_RLpoSheWoep6iJqmpNGFt8o62rVtHffJjjd1dAffe0ieri4fL66T8e3o5uJ8nFjO0y7hWABKbqDIrPKovM1tlrMSrEWTKVdKz730pfCGG4ay8KK0ynqf88IIJ_iQHG9656F9XbjY6VkVratr07h2ETVKxaViPOX_QIWQDPvp0aNf6LRdhKZ_RDOQWZ7xTKxv44ayoY0xOK_noZqZsNIIeu1Db3zo3ode-9DQZ9gmE3u2mbjw0_x36AtQ7o48</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Hausmann, Peter</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7429-736X</orcidid></search><sort><creationdate>20170301</creationdate><title>Geospatial data: a key ingredient for Swiss Re’s underwriting and service tools</title><author>Hausmann, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-31b0183a0b5c9f19fc6c562d0cc1a59ed8f3f8fd7fa3a218bf7dc9cff63ba7e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catastrophes</topic><topic>Civil Engineering</topic><topic>Data</topic><topic>Disasters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Management</topic><topic>Floods</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hazards</topic><topic>Hydrogeology</topic><topic>Insured losses</topic><topic>Mapping</topic><topic>Market prices</topic><topic>Mathematical analysis</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Pricing</topic><topic>Reinsurance</topic><topic>Risk</topic><topic>Spatial data</topic><topic>Underwriting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hausmann, Peter</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hausmann, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geospatial data: a key ingredient for Swiss Re’s underwriting and service tools</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>86</volume><issue>Suppl 1</issue><spage>197</spage><epage>198</epage><pages>197-198</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>As a leading global reinsurer, Swiss Re deals with many hazards and risks for which geospatial data are crucial in order to obtain reliable assessments of expected insured losses or large losses from catastrophes. Typically, such data are used in combination with insurance data either in pricing tools to calculate premiums, tail risks and more, or in mapping tools. In natural perils pricing applications—the most important group of tools—geospatial data are usually “not visible” but are instead used to create probabilistic event sets. For example, a flood event set may define spatially if and how frequently a given location is flooded. Mapping tools, such as Swiss Re’s CatNet ® ( www.swissre.com/catnet ), visualize the data in the form of maps which include many useful attributes per geographic location.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-016-2642-0</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0001-7429-736X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-030X
ispartof Natural hazards (Dordrecht), 2017-03, Vol.86 (Suppl 1), p.197-198
issn 0921-030X
1573-0840
language eng
recordid cdi_proquest_miscellaneous_1893892343
source SpringerLink (Online service)
subjects Catastrophes
Civil Engineering
Data
Disasters
Earth and Environmental Science
Earth Sciences
Environmental Management
Floods
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hazards
Hydrogeology
Insured losses
Mapping
Market prices
Mathematical analysis
Natural Hazards
Original Paper
Pricing
Reinsurance
Risk
Spatial data
Underwriting
title Geospatial data: a key ingredient for Swiss Re’s underwriting and service tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geospatial%20data:%20a%20key%20ingredient%20for%20Swiss%20Re%E2%80%99s%20underwriting%20and%20service%20tools&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Hausmann,%20Peter&rft.date=2017-03-01&rft.volume=86&rft.issue=Suppl%201&rft.spage=197&rft.epage=198&rft.pages=197-198&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-016-2642-0&rft_dat=%3Cproquest_cross%3E2085653577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085653577&rft_id=info:pmid/&rfr_iscdi=true