A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability
We demonstrate a room-temperature sodium sulfur battery based on a confining microporous carbon template derived from sucrose that delivers a reversible capacity over 700 mAh/gS at 0.1C rates, maintaining 370 mAh/gS at 10 times higher rates of 1C. Cycling at 1C rates reveals retention of over 300 mA...
Gespeichert in:
Veröffentlicht in: | Nano letters 2017-03, Vol.17 (3), p.1863-1869 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1869 |
---|---|
container_issue | 3 |
container_start_page | 1863 |
container_title | Nano letters |
container_volume | 17 |
creator | Carter, Rachel Oakes, Landon Douglas, Anna Muralidharan, Nitin Cohn, Adam P Pint, Cary L |
description | We demonstrate a room-temperature sodium sulfur battery based on a confining microporous carbon template derived from sucrose that delivers a reversible capacity over 700 mAh/gS at 0.1C rates, maintaining 370 mAh/gS at 10 times higher rates of 1C. Cycling at 1C rates reveals retention of over 300 mAh/gS capacity across 1500 cycles with Coulombic efficiency >98% due to microporous sulfur confinement and stability of the sodium metal anode in a glyme-based electrolyte. We show sucrose to be an ideal platform to develop microporous carbon capable of mitigating electrode–electrolyte reactivity and loss of soluble intermediate discharge products. In a manner parallel to the low-cost materials of the traditional sodium beta battery, our work demonstrates the combination of table sugar, sulfur, and sodium, all of which are cheap and earth abundant, for a high-performance stable room-temperature sodium sulfur battery. |
doi_str_mv | 10.1021/acs.nanolett.6b05172 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893890726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865548127</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-748c5672b51b1b51046ba78965ea509e08b2142778aa9e0b8d2bb442410486aa3</originalsourceid><addsrcrecordid>eNqNkMtKw0AUhgdRrFbfQCRLN6kzk7llWesVCoKtuAwzybSmJJk6FyVv75ReluLmXOD7z4EPgCsERwhidCtLN-pkZxrt_YgpSBHHR-AM0QymLM_x8WEWZADOnVtBCPOMwlMwwAJRxDg9Ax_jZBaW0qb32tbfukrejGnTuW7X2kofrE5mpqpDG6lmEWxyJ73Xtk9-av-ZTE23TObatsmkL5s6LjMvVd3Uvr8AJwvZOH2560Pw_vgwnzyn09enl8l4mkqCoU85ESVlHCuKFIoFEqYkFzmjWlKYaygURgRzLqSMmxIVVooQTCIpmJTZENxs766t-Qra-aKtXambRnbaBFcgkWcihxyzf6CMUiIQ5hElW7S0xjmrF8Xa1q20fYFgsbFfRPvF3n6xsx9j17sPQbW6OoT2uiMAt8AmvjLBdtHN3zd_ATxLkv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865548127</pqid></control><display><type>article</type><title>A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability</title><source>ACS Publications</source><creator>Carter, Rachel ; Oakes, Landon ; Douglas, Anna ; Muralidharan, Nitin ; Cohn, Adam P ; Pint, Cary L</creator><creatorcontrib>Carter, Rachel ; Oakes, Landon ; Douglas, Anna ; Muralidharan, Nitin ; Cohn, Adam P ; Pint, Cary L</creatorcontrib><description>We demonstrate a room-temperature sodium sulfur battery based on a confining microporous carbon template derived from sucrose that delivers a reversible capacity over 700 mAh/gS at 0.1C rates, maintaining 370 mAh/gS at 10 times higher rates of 1C. Cycling at 1C rates reveals retention of over 300 mAh/gS capacity across 1500 cycles with Coulombic efficiency >98% due to microporous sulfur confinement and stability of the sodium metal anode in a glyme-based electrolyte. We show sucrose to be an ideal platform to develop microporous carbon capable of mitigating electrode–electrolyte reactivity and loss of soluble intermediate discharge products. In a manner parallel to the low-cost materials of the traditional sodium beta battery, our work demonstrates the combination of table sugar, sulfur, and sodium, all of which are cheap and earth abundant, for a high-performance stable room-temperature sodium sulfur battery.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.6b05172</identifier><identifier>PMID: 28151675</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon ; Confinement ; Cycles ; Sodium ; Sodium sulfur batteries ; Stability ; Sucrose ; Sulfur</subject><ispartof>Nano letters, 2017-03, Vol.17 (3), p.1863-1869</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-748c5672b51b1b51046ba78965ea509e08b2142778aa9e0b8d2bb442410486aa3</citedby><cites>FETCH-LOGICAL-a420t-748c5672b51b1b51046ba78965ea509e08b2142778aa9e0b8d2bb442410486aa3</cites><orcidid>0000-0001-6042-5295 ; 0000-0003-4700-0852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.6b05172$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.6b05172$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28151675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Rachel</creatorcontrib><creatorcontrib>Oakes, Landon</creatorcontrib><creatorcontrib>Douglas, Anna</creatorcontrib><creatorcontrib>Muralidharan, Nitin</creatorcontrib><creatorcontrib>Cohn, Adam P</creatorcontrib><creatorcontrib>Pint, Cary L</creatorcontrib><title>A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We demonstrate a room-temperature sodium sulfur battery based on a confining microporous carbon template derived from sucrose that delivers a reversible capacity over 700 mAh/gS at 0.1C rates, maintaining 370 mAh/gS at 10 times higher rates of 1C. Cycling at 1C rates reveals retention of over 300 mAh/gS capacity across 1500 cycles with Coulombic efficiency >98% due to microporous sulfur confinement and stability of the sodium metal anode in a glyme-based electrolyte. We show sucrose to be an ideal platform to develop microporous carbon capable of mitigating electrode–electrolyte reactivity and loss of soluble intermediate discharge products. In a manner parallel to the low-cost materials of the traditional sodium beta battery, our work demonstrates the combination of table sugar, sulfur, and sodium, all of which are cheap and earth abundant, for a high-performance stable room-temperature sodium sulfur battery.</description><subject>Carbon</subject><subject>Confinement</subject><subject>Cycles</subject><subject>Sodium</subject><subject>Sodium sulfur batteries</subject><subject>Stability</subject><subject>Sucrose</subject><subject>Sulfur</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKw0AUhgdRrFbfQCRLN6kzk7llWesVCoKtuAwzybSmJJk6FyVv75ReluLmXOD7z4EPgCsERwhidCtLN-pkZxrt_YgpSBHHR-AM0QymLM_x8WEWZADOnVtBCPOMwlMwwAJRxDg9Ax_jZBaW0qb32tbfukrejGnTuW7X2kofrE5mpqpDG6lmEWxyJ73Xtk9-av-ZTE23TObatsmkL5s6LjMvVd3Uvr8AJwvZOH2560Pw_vgwnzyn09enl8l4mkqCoU85ESVlHCuKFIoFEqYkFzmjWlKYaygURgRzLqSMmxIVVooQTCIpmJTZENxs766t-Qra-aKtXambRnbaBFcgkWcihxyzf6CMUiIQ5hElW7S0xjmrF8Xa1q20fYFgsbFfRPvF3n6xsx9j17sPQbW6OoT2uiMAt8AmvjLBdtHN3zd_ATxLkv4</recordid><startdate>20170308</startdate><enddate>20170308</enddate><creator>Carter, Rachel</creator><creator>Oakes, Landon</creator><creator>Douglas, Anna</creator><creator>Muralidharan, Nitin</creator><creator>Cohn, Adam P</creator><creator>Pint, Cary L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6042-5295</orcidid><orcidid>https://orcid.org/0000-0003-4700-0852</orcidid></search><sort><creationdate>20170308</creationdate><title>A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability</title><author>Carter, Rachel ; Oakes, Landon ; Douglas, Anna ; Muralidharan, Nitin ; Cohn, Adam P ; Pint, Cary L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-748c5672b51b1b51046ba78965ea509e08b2142778aa9e0b8d2bb442410486aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Confinement</topic><topic>Cycles</topic><topic>Sodium</topic><topic>Sodium sulfur batteries</topic><topic>Stability</topic><topic>Sucrose</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Rachel</creatorcontrib><creatorcontrib>Oakes, Landon</creatorcontrib><creatorcontrib>Douglas, Anna</creatorcontrib><creatorcontrib>Muralidharan, Nitin</creatorcontrib><creatorcontrib>Cohn, Adam P</creatorcontrib><creatorcontrib>Pint, Cary L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Rachel</au><au>Oakes, Landon</au><au>Douglas, Anna</au><au>Muralidharan, Nitin</au><au>Cohn, Adam P</au><au>Pint, Cary L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-03-08</date><risdate>2017</risdate><volume>17</volume><issue>3</issue><spage>1863</spage><epage>1869</epage><pages>1863-1869</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We demonstrate a room-temperature sodium sulfur battery based on a confining microporous carbon template derived from sucrose that delivers a reversible capacity over 700 mAh/gS at 0.1C rates, maintaining 370 mAh/gS at 10 times higher rates of 1C. Cycling at 1C rates reveals retention of over 300 mAh/gS capacity across 1500 cycles with Coulombic efficiency >98% due to microporous sulfur confinement and stability of the sodium metal anode in a glyme-based electrolyte. We show sucrose to be an ideal platform to develop microporous carbon capable of mitigating electrode–electrolyte reactivity and loss of soluble intermediate discharge products. In a manner parallel to the low-cost materials of the traditional sodium beta battery, our work demonstrates the combination of table sugar, sulfur, and sodium, all of which are cheap and earth abundant, for a high-performance stable room-temperature sodium sulfur battery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28151675</pmid><doi>10.1021/acs.nanolett.6b05172</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6042-5295</orcidid><orcidid>https://orcid.org/0000-0003-4700-0852</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2017-03, Vol.17 (3), p.1863-1869 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893890726 |
source | ACS Publications |
subjects | Carbon Confinement Cycles Sodium Sodium sulfur batteries Stability Sucrose Sulfur |
title | A Sugar-Derived Room-Temperature Sodium Sulfur Battery with Long Term Cycling Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sugar-Derived%20Room-Temperature%20Sodium%20Sulfur%20Battery%20with%20Long%20Term%20Cycling%20Stability&rft.jtitle=Nano%20letters&rft.au=Carter,%20Rachel&rft.date=2017-03-08&rft.volume=17&rft.issue=3&rft.spage=1863&rft.epage=1869&rft.pages=1863-1869&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.6b05172&rft_dat=%3Cproquest_cross%3E1865548127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865548127&rft_id=info:pmid/28151675&rfr_iscdi=true |