Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions

The reliability of explicitly correlated methods for providing benchmark-quality noncovalent interaction energies was tested at various levels of theory and compared to estimates of the complete basis set (CBS) limit. For all systems of the A24 test set, computations were performed using both aug-cc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2017-01, Vol.13 (1), p.86-99
Hauptverfasser: Sirianni, Dominic A, Burns, Lori A, Sherrill, C. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 86
container_title Journal of chemical theory and computation
container_volume 13
creator Sirianni, Dominic A
Burns, Lori A
Sherrill, C. David
description The reliability of explicitly correlated methods for providing benchmark-quality noncovalent interaction energies was tested at various levels of theory and compared to estimates of the complete basis set (CBS) limit. For all systems of the A24 test set, computations were performed using both aug-cc-pVXZ (aXZ; X = D, T, Q, 5) basis sets and specialized cc-pVXZ-F12 (XZ-F12; X = D, T, Q, 5) basis sets paired with explicitly correlated coupled cluster singles and doubles [CCSD-F12n (n = a, b, c)] with triple excitations treated by the canonical perturbative method and scaled to compensate for their lack of explicit correlation [(T**)]. Results show that aXZ basis sets produce smaller errors versus the CBS limit than XZ-F12 basis sets. The F12b ansatz results in the lowest average errors for aTZ and larger basis sets, while F12a is best for double-ζ basis sets. When using aXZ basis sets (X ≥ 3), convergence is achieved from above for F12b and F12c ansatzë and from below for F12a. The CCSD­(T**)-F12b/aXZ approach converges quicker with respect to basis than any other combination, although the performance of CCSD­(T**)-F12c/aXZ is very similar. Both CCSD­(T**)-F12b/aTZ and focal point schemes employing density-fitted, frozen natural orbital [DF-FNO] CCSD­(T)/aTZ exhibit similar accuracy and computational cost, and both are much more computationally efficient than large-basis conventional CCSD­(T) computations of similar accuracy.
doi_str_mv 10.1021/acs.jctc.6b00797
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893888286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1857377164</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-f0cf41416006ffcd47b3ecd5134eed03fd31a3c873f1b7db330746cf7035abc23</originalsourceid><addsrcrecordid>eNqNkUFPGzEQRi1UBBS4c0I-9sAGe72xvUcapQWJwqU9r7yz48SwsYPtBfLvu2lSbpV6mjm875NmHiEXnE04K_m1gTR5ggwT2TKmanVATvi0qotalvLTx871Mfmc0hNjQlSlOCLHpWZSK8VOyNssrNYmuhQ8DZbO39e9A5f7DZ2FGLE3GTv6A_MydInaEOmWH7LzC3rrFsviBmCIBjb0K3pYrkx8pnOPceFwhz8ED-HV9OgzvfMZRza74NMZObSmT3i-n6fk17f5z9ltcf_4_W52c18YIetcWAa24hWXjElroatUKxC6KRcVYseE7QQ3ArQSlreqa4VgqpJgFRNT00IpTsmXXe86hpcBU25WLgH2vfEYhtRwXQutdanlf6BTJZTishpRtkMhhpQi2mYd3Xj8puGs2ZppRjPN1kyzNzNGLvftQ7vC7iPwV8UIXO2AP9EwRD_-5d99vwH625xI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857377164</pqid></control><display><type>article</type><title>Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions</title><source>ACS Publications</source><source>MEDLINE</source><creator>Sirianni, Dominic A ; Burns, Lori A ; Sherrill, C. David</creator><creatorcontrib>Sirianni, Dominic A ; Burns, Lori A ; Sherrill, C. David</creatorcontrib><description>The reliability of explicitly correlated methods for providing benchmark-quality noncovalent interaction energies was tested at various levels of theory and compared to estimates of the complete basis set (CBS) limit. For all systems of the A24 test set, computations were performed using both aug-cc-pVXZ (aXZ; X = D, T, Q, 5) basis sets and specialized cc-pVXZ-F12 (XZ-F12; X = D, T, Q, 5) basis sets paired with explicitly correlated coupled cluster singles and doubles [CCSD-F12n (n = a, b, c)] with triple excitations treated by the canonical perturbative method and scaled to compensate for their lack of explicit correlation [(T**)]. Results show that aXZ basis sets produce smaller errors versus the CBS limit than XZ-F12 basis sets. The F12b ansatz results in the lowest average errors for aTZ and larger basis sets, while F12a is best for double-ζ basis sets. When using aXZ basis sets (X ≥ 3), convergence is achieved from above for F12b and F12c ansatzë and from below for F12a. The CCSD­(T**)-F12b/aXZ approach converges quicker with respect to basis than any other combination, although the performance of CCSD­(T**)-F12c/aXZ is very similar. Both CCSD­(T**)-F12b/aTZ and focal point schemes employing density-fitted, frozen natural orbital [DF-FNO] CCSD­(T)/aTZ exhibit similar accuracy and computational cost, and both are much more computationally efficient than large-basis conventional CCSD­(T) computations of similar accuracy.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00797</identifier><identifier>PMID: 28068770</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Benchmarking ; Computation ; Computational efficiency ; Convergence ; Correlation ; Errors ; Quantum Theory ; Reliability</subject><ispartof>Journal of chemical theory and computation, 2017-01, Vol.13 (1), p.86-99</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-f0cf41416006ffcd47b3ecd5134eed03fd31a3c873f1b7db330746cf7035abc23</citedby><cites>FETCH-LOGICAL-a369t-f0cf41416006ffcd47b3ecd5134eed03fd31a3c873f1b7db330746cf7035abc23</cites><orcidid>0000-0002-5570-7666 ; 0000-0002-6464-0213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00797$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00797$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28068770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sirianni, Dominic A</creatorcontrib><creatorcontrib>Burns, Lori A</creatorcontrib><creatorcontrib>Sherrill, C. David</creatorcontrib><title>Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The reliability of explicitly correlated methods for providing benchmark-quality noncovalent interaction energies was tested at various levels of theory and compared to estimates of the complete basis set (CBS) limit. For all systems of the A24 test set, computations were performed using both aug-cc-pVXZ (aXZ; X = D, T, Q, 5) basis sets and specialized cc-pVXZ-F12 (XZ-F12; X = D, T, Q, 5) basis sets paired with explicitly correlated coupled cluster singles and doubles [CCSD-F12n (n = a, b, c)] with triple excitations treated by the canonical perturbative method and scaled to compensate for their lack of explicit correlation [(T**)]. Results show that aXZ basis sets produce smaller errors versus the CBS limit than XZ-F12 basis sets. The F12b ansatz results in the lowest average errors for aTZ and larger basis sets, while F12a is best for double-ζ basis sets. When using aXZ basis sets (X ≥ 3), convergence is achieved from above for F12b and F12c ansatzë and from below for F12a. The CCSD­(T**)-F12b/aXZ approach converges quicker with respect to basis than any other combination, although the performance of CCSD­(T**)-F12c/aXZ is very similar. Both CCSD­(T**)-F12b/aTZ and focal point schemes employing density-fitted, frozen natural orbital [DF-FNO] CCSD­(T)/aTZ exhibit similar accuracy and computational cost, and both are much more computationally efficient than large-basis conventional CCSD­(T) computations of similar accuracy.</description><subject>Accuracy</subject><subject>Benchmarking</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Convergence</subject><subject>Correlation</subject><subject>Errors</subject><subject>Quantum Theory</subject><subject>Reliability</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFPGzEQRi1UBBS4c0I-9sAGe72xvUcapQWJwqU9r7yz48SwsYPtBfLvu2lSbpV6mjm875NmHiEXnE04K_m1gTR5ggwT2TKmanVATvi0qotalvLTx871Mfmc0hNjQlSlOCLHpWZSK8VOyNssrNYmuhQ8DZbO39e9A5f7DZ2FGLE3GTv6A_MydInaEOmWH7LzC3rrFsviBmCIBjb0K3pYrkx8pnOPceFwhz8ED-HV9OgzvfMZRza74NMZObSmT3i-n6fk17f5z9ltcf_4_W52c18YIetcWAa24hWXjElroatUKxC6KRcVYseE7QQ3ArQSlreqa4VgqpJgFRNT00IpTsmXXe86hpcBU25WLgH2vfEYhtRwXQutdanlf6BTJZTishpRtkMhhpQi2mYd3Xj8puGs2ZppRjPN1kyzNzNGLvftQ7vC7iPwV8UIXO2AP9EwRD_-5d99vwH625xI</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Sirianni, Dominic A</creator><creator>Burns, Lori A</creator><creator>Sherrill, C. David</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5570-7666</orcidid><orcidid>https://orcid.org/0000-0002-6464-0213</orcidid></search><sort><creationdate>20170110</creationdate><title>Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions</title><author>Sirianni, Dominic A ; Burns, Lori A ; Sherrill, C. David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-f0cf41416006ffcd47b3ecd5134eed03fd31a3c873f1b7db330746cf7035abc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Benchmarking</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Convergence</topic><topic>Correlation</topic><topic>Errors</topic><topic>Quantum Theory</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sirianni, Dominic A</creatorcontrib><creatorcontrib>Burns, Lori A</creatorcontrib><creatorcontrib>Sherrill, C. David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sirianni, Dominic A</au><au>Burns, Lori A</au><au>Sherrill, C. David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>13</volume><issue>1</issue><spage>86</spage><epage>99</epage><pages>86-99</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The reliability of explicitly correlated methods for providing benchmark-quality noncovalent interaction energies was tested at various levels of theory and compared to estimates of the complete basis set (CBS) limit. For all systems of the A24 test set, computations were performed using both aug-cc-pVXZ (aXZ; X = D, T, Q, 5) basis sets and specialized cc-pVXZ-F12 (XZ-F12; X = D, T, Q, 5) basis sets paired with explicitly correlated coupled cluster singles and doubles [CCSD-F12n (n = a, b, c)] with triple excitations treated by the canonical perturbative method and scaled to compensate for their lack of explicit correlation [(T**)]. Results show that aXZ basis sets produce smaller errors versus the CBS limit than XZ-F12 basis sets. The F12b ansatz results in the lowest average errors for aTZ and larger basis sets, while F12a is best for double-ζ basis sets. When using aXZ basis sets (X ≥ 3), convergence is achieved from above for F12b and F12c ansatzë and from below for F12a. The CCSD­(T**)-F12b/aXZ approach converges quicker with respect to basis than any other combination, although the performance of CCSD­(T**)-F12c/aXZ is very similar. Both CCSD­(T**)-F12b/aTZ and focal point schemes employing density-fitted, frozen natural orbital [DF-FNO] CCSD­(T)/aTZ exhibit similar accuracy and computational cost, and both are much more computationally efficient than large-basis conventional CCSD­(T) computations of similar accuracy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28068770</pmid><doi>10.1021/acs.jctc.6b00797</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5570-7666</orcidid><orcidid>https://orcid.org/0000-0002-6464-0213</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2017-01, Vol.13 (1), p.86-99
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1893888286
source ACS Publications; MEDLINE
subjects Accuracy
Benchmarking
Computation
Computational efficiency
Convergence
Correlation
Errors
Quantum Theory
Reliability
title Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A07%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Explicitly%20Correlated%20Methods%20for%20Computing%20High-Accuracy%20Benchmark%20Energies%20for%20Noncovalent%20Interactions&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Sirianni,%20Dominic%20A&rft.date=2017-01-10&rft.volume=13&rft.issue=1&rft.spage=86&rft.epage=99&rft.pages=86-99&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00797&rft_dat=%3Cproquest_cross%3E1857377164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1857377164&rft_id=info:pmid/28068770&rfr_iscdi=true