Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization

Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2017-02, Vol.121 (5), p.942-955
Hauptverfasser: Blanco, Celia, Stich, Michael, Hochberg, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 955
container_issue 5
container_start_page 942
container_title The journal of physical chemistry. B
container_volume 121
creator Blanco, Celia
Stich, Michael
Hochberg, David
description Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage–fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model’s capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis.
doi_str_mv 10.1021/acs.jpcb.6b10705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893887683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893887683</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-9487c6a42926ea5a9641c28ea9489bab0f422a203d5e81a2c58dee3c91a9222f3</originalsourceid><addsrcrecordid>eNqNkDFPwzAQRi0EoqWwM6GMDKTYTuw4I6oKrQSUAebo4lxVV05S4gQp_HpcGtiQGE4--d73DY-QS0anjHJ2C9pNtzudT2XOaELFERkzwWnoJzkedsmoHJEz57aUcsGVPCUjrmjCUqrGZPWEegOV0WBtHyyrotNYBIu6rPXGNGBN2wemCp47bRFaf5pXULWmdmhRt-YDg5fa9iU25hP8d3VOTtZgHV4M74S83c9fZ4vwcfWwnN09hhDHqg3TWCVaQsxTLhEEpDJmmisEf0hzyOk65hw4jQqBigHXQhWIkU4ZpJzzdTQh14feXVO_d-jarDROo7VQYd25jKk0UiqRKvoHKpIoETIRHqUHVDe1cw2us11jSmj6jNFsbzzzxrO98Www7iNXQ3uXl1j8Bn4Ue-DmAHxH666pvJe_-74Atb-M8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857375675</pqid></control><display><type>article</type><title>Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization</title><source>MEDLINE</source><source>ACS Publications</source><creator>Blanco, Celia ; Stich, Michael ; Hochberg, David</creator><creatorcontrib>Blanco, Celia ; Stich, Michael ; Hochberg, David</creatorcontrib><description>Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage–fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model’s capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b10705</identifier><identifier>PMID: 28071908</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Broken symmetry ; Chain drives ; Chains (polymeric) ; Chemical evolution ; Evolution, Chemical ; Mathematical models ; Monomers ; Nucleation ; Polymerization ; Stereoisomerism ; Thermodynamics ; Time Factors</subject><ispartof>The journal of physical chemistry. B, 2017-02, Vol.121 (5), p.942-955</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-9487c6a42926ea5a9641c28ea9489bab0f422a203d5e81a2c58dee3c91a9222f3</citedby><cites>FETCH-LOGICAL-a448t-9487c6a42926ea5a9641c28ea9489bab0f422a203d5e81a2c58dee3c91a9222f3</cites><orcidid>0000-0002-0411-019X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.6b10705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b10705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28071908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blanco, Celia</creatorcontrib><creatorcontrib>Stich, Michael</creatorcontrib><creatorcontrib>Hochberg, David</creatorcontrib><title>Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage–fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model’s capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis.</description><subject>Broken symmetry</subject><subject>Chain drives</subject><subject>Chains (polymeric)</subject><subject>Chemical evolution</subject><subject>Evolution, Chemical</subject><subject>Mathematical models</subject><subject>Monomers</subject><subject>Nucleation</subject><subject>Polymerization</subject><subject>Stereoisomerism</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkDFPwzAQRi0EoqWwM6GMDKTYTuw4I6oKrQSUAebo4lxVV05S4gQp_HpcGtiQGE4--d73DY-QS0anjHJ2C9pNtzudT2XOaELFERkzwWnoJzkedsmoHJEz57aUcsGVPCUjrmjCUqrGZPWEegOV0WBtHyyrotNYBIu6rPXGNGBN2wemCp47bRFaf5pXULWmdmhRt-YDg5fa9iU25hP8d3VOTtZgHV4M74S83c9fZ4vwcfWwnN09hhDHqg3TWCVaQsxTLhEEpDJmmisEf0hzyOk65hw4jQqBigHXQhWIkU4ZpJzzdTQh14feXVO_d-jarDROo7VQYd25jKk0UiqRKvoHKpIoETIRHqUHVDe1cw2us11jSmj6jNFsbzzzxrO98Www7iNXQ3uXl1j8Bn4Ue-DmAHxH666pvJe_-74Atb-M8A</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Blanco, Celia</creator><creator>Stich, Michael</creator><creator>Hochberg, David</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0411-019X</orcidid></search><sort><creationdate>20170209</creationdate><title>Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization</title><author>Blanco, Celia ; Stich, Michael ; Hochberg, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-9487c6a42926ea5a9641c28ea9489bab0f422a203d5e81a2c58dee3c91a9222f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Broken symmetry</topic><topic>Chain drives</topic><topic>Chains (polymeric)</topic><topic>Chemical evolution</topic><topic>Evolution, Chemical</topic><topic>Mathematical models</topic><topic>Monomers</topic><topic>Nucleation</topic><topic>Polymerization</topic><topic>Stereoisomerism</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanco, Celia</creatorcontrib><creatorcontrib>Stich, Michael</creatorcontrib><creatorcontrib>Hochberg, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanco, Celia</au><au>Stich, Michael</au><au>Hochberg, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2017-02-09</date><risdate>2017</risdate><volume>121</volume><issue>5</issue><spage>942</spage><epage>955</epage><pages>942-955</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage–fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model’s capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28071908</pmid><doi>10.1021/acs.jpcb.6b10705</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0411-019X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2017-02, Vol.121 (5), p.942-955
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1893887683
source MEDLINE; ACS Publications
subjects Broken symmetry
Chain drives
Chains (polymeric)
Chemical evolution
Evolution, Chemical
Mathematical models
Monomers
Nucleation
Polymerization
Stereoisomerism
Thermodynamics
Time Factors
title Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20Induced%20Homochirality%20in%20Nucleated%20Enantioselective%20Polymerization&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Blanco,%20Celia&rft.date=2017-02-09&rft.volume=121&rft.issue=5&rft.spage=942&rft.epage=955&rft.pages=942-955&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b10705&rft_dat=%3Cproquest_cross%3E1893887683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1857375675&rft_id=info:pmid/28071908&rfr_iscdi=true