Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization
Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed system...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2017-02, Vol.121 (5), p.942-955 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 955 |
---|---|
container_issue | 5 |
container_start_page | 942 |
container_title | The journal of physical chemistry. B |
container_volume | 121 |
creator | Blanco, Celia Stich, Michael Hochberg, David |
description | Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage–fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model’s capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis. |
doi_str_mv | 10.1021/acs.jpcb.6b10705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893887683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893887683</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-9487c6a42926ea5a9641c28ea9489bab0f422a203d5e81a2c58dee3c91a9222f3</originalsourceid><addsrcrecordid>eNqNkDFPwzAQRi0EoqWwM6GMDKTYTuw4I6oKrQSUAebo4lxVV05S4gQp_HpcGtiQGE4--d73DY-QS0anjHJ2C9pNtzudT2XOaELFERkzwWnoJzkedsmoHJEz57aUcsGVPCUjrmjCUqrGZPWEegOV0WBtHyyrotNYBIu6rPXGNGBN2wemCp47bRFaf5pXULWmdmhRt-YDg5fa9iU25hP8d3VOTtZgHV4M74S83c9fZ4vwcfWwnN09hhDHqg3TWCVaQsxTLhEEpDJmmisEf0hzyOk65hw4jQqBigHXQhWIkU4ZpJzzdTQh14feXVO_d-jarDROo7VQYd25jKk0UiqRKvoHKpIoETIRHqUHVDe1cw2us11jSmj6jNFsbzzzxrO98Www7iNXQ3uXl1j8Bn4Ue-DmAHxH666pvJe_-74Atb-M8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857375675</pqid></control><display><type>article</type><title>Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization</title><source>MEDLINE</source><source>ACS Publications</source><creator>Blanco, Celia ; Stich, Michael ; Hochberg, David</creator><creatorcontrib>Blanco, Celia ; Stich, Michael ; Hochberg, David</creatorcontrib><description>Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage–fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model’s capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b10705</identifier><identifier>PMID: 28071908</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Broken symmetry ; Chain drives ; Chains (polymeric) ; Chemical evolution ; Evolution, Chemical ; Mathematical models ; Monomers ; Nucleation ; Polymerization ; Stereoisomerism ; Thermodynamics ; Time Factors</subject><ispartof>The journal of physical chemistry. B, 2017-02, Vol.121 (5), p.942-955</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-9487c6a42926ea5a9641c28ea9489bab0f422a203d5e81a2c58dee3c91a9222f3</citedby><cites>FETCH-LOGICAL-a448t-9487c6a42926ea5a9641c28ea9489bab0f422a203d5e81a2c58dee3c91a9222f3</cites><orcidid>0000-0002-0411-019X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.6b10705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b10705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28071908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blanco, Celia</creatorcontrib><creatorcontrib>Stich, Michael</creatorcontrib><creatorcontrib>Hochberg, David</creatorcontrib><title>Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage–fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model’s capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis.</description><subject>Broken symmetry</subject><subject>Chain drives</subject><subject>Chains (polymeric)</subject><subject>Chemical evolution</subject><subject>Evolution, Chemical</subject><subject>Mathematical models</subject><subject>Monomers</subject><subject>Nucleation</subject><subject>Polymerization</subject><subject>Stereoisomerism</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkDFPwzAQRi0EoqWwM6GMDKTYTuw4I6oKrQSUAebo4lxVV05S4gQp_HpcGtiQGE4--d73DY-QS0anjHJ2C9pNtzudT2XOaELFERkzwWnoJzkedsmoHJEz57aUcsGVPCUjrmjCUqrGZPWEegOV0WBtHyyrotNYBIu6rPXGNGBN2wemCp47bRFaf5pXULWmdmhRt-YDg5fa9iU25hP8d3VOTtZgHV4M74S83c9fZ4vwcfWwnN09hhDHqg3TWCVaQsxTLhEEpDJmmisEf0hzyOk65hw4jQqBigHXQhWIkU4ZpJzzdTQh14feXVO_d-jarDROo7VQYd25jKk0UiqRKvoHKpIoETIRHqUHVDe1cw2us11jSmj6jNFsbzzzxrO98Www7iNXQ3uXl1j8Bn4Ue-DmAHxH666pvJe_-74Atb-M8A</recordid><startdate>20170209</startdate><enddate>20170209</enddate><creator>Blanco, Celia</creator><creator>Stich, Michael</creator><creator>Hochberg, David</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0411-019X</orcidid></search><sort><creationdate>20170209</creationdate><title>Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization</title><author>Blanco, Celia ; Stich, Michael ; Hochberg, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-9487c6a42926ea5a9641c28ea9489bab0f422a203d5e81a2c58dee3c91a9222f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Broken symmetry</topic><topic>Chain drives</topic><topic>Chains (polymeric)</topic><topic>Chemical evolution</topic><topic>Evolution, Chemical</topic><topic>Mathematical models</topic><topic>Monomers</topic><topic>Nucleation</topic><topic>Polymerization</topic><topic>Stereoisomerism</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanco, Celia</creatorcontrib><creatorcontrib>Stich, Michael</creatorcontrib><creatorcontrib>Hochberg, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanco, Celia</au><au>Stich, Michael</au><au>Hochberg, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2017-02-09</date><risdate>2017</risdate><volume>121</volume><issue>5</issue><spage>942</spage><epage>955</epage><pages>942-955</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Understanding how biological homochirality may have emerged during chemical evolution remains a challenge for origin of life research. In keeping with this goal, we introduce and solve numerically a kinetic rate equation model of nucleated cooperative enantioselective polymerization in closed systems. The microreversible scheme includes (i) solution-phase racemization of the monomers, (ii) linear chain growth by stepwise monomer attachment, in both nucleation and elongation phases, and (iii) annealing or fusion of homochiral chains. Mechanically induced breakage of the longest chains maintains the system out of equilibrium and drives a breakage–fusion recycling mechanism. Spontaneous mirror symmetry breaking can be achieved starting from small initial enantiomeric excesses due to the intrinsic statistical fluctuations about the idealized racemic composition. The subsequent chiral amplification confirms the model’s capacity for absolute asymmetric synthesis, without chiral cross-inhibition and without explicit autocatalysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28071908</pmid><doi>10.1021/acs.jpcb.6b10705</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0411-019X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2017-02, Vol.121 (5), p.942-955 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893887683 |
source | MEDLINE; ACS Publications |
subjects | Broken symmetry Chain drives Chains (polymeric) Chemical evolution Evolution, Chemical Mathematical models Monomers Nucleation Polymerization Stereoisomerism Thermodynamics Time Factors |
title | Mechanically Induced Homochirality in Nucleated Enantioselective Polymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20Induced%20Homochirality%20in%20Nucleated%20Enantioselective%20Polymerization&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Blanco,%20Celia&rft.date=2017-02-09&rft.volume=121&rft.issue=5&rft.spage=942&rft.epage=955&rft.pages=942-955&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b10705&rft_dat=%3Cproquest_cross%3E1893887683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1857375675&rft_id=info:pmid/28071908&rfr_iscdi=true |