Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks

The coexistence of nanofillers and shear flow can influence crystallization of polymer melts. However, the microscopic mechanism of the effect is not completely revealed yet. Thus, dynamic Monte Carlo simulations were used to study the effect of the filler networks formed by one-dimensional nanofill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2017-02, Vol.121 (6), p.1426-1437
Hauptverfasser: Nie, Yijing, Hao, Tongfan, Gu, Zhouzhou, Wang, Yue, Liu, Yong, Zhang, Ding, Wei, Ya, Li, Songjun, Zhou, Zhiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1437
container_issue 6
container_start_page 1426
container_title The journal of physical chemistry. B
container_volume 121
creator Nie, Yijing
Hao, Tongfan
Gu, Zhouzhou
Wang, Yue
Liu, Yong
Zhang, Ding
Wei, Ya
Li, Songjun
Zhou, Zhiping
description The coexistence of nanofillers and shear flow can influence crystallization of polymer melts. However, the microscopic mechanism of the effect is not completely revealed yet. Thus, dynamic Monte Carlo simulations were used to study the effect of the filler networks formed by one-dimensional nanofillers on relaxation and crystallization of oriented polymer melts. The filler networks restrict the relaxation of oriented polymers and impose confinement effect on the chains inside the filler networks, resulting in higher orientation and lower conformational entropy of the inside chains compared to those of the outside chains. Thus, the confined inside chains have stronger crystallizability. During crystallization, the confined chains are nucleated on the filler surface and then form nanohybrid shish–kebab structures. Furthermore, the effect of fillers and chain orientation closely depends on some factors, such as polymer–filler interaction, filler content, and filler spacing. Our simulation results are consistent with some experimental findings. Thus, these results can provide new insights into the mechanism of crystallization of filled polymers and also guide researchers to develop new polymer nanocomposites with high performance.
doi_str_mv 10.1021/acs.jpcb.6b12569
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893887043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893887043</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-4a9b63d85166a1f1e4c6e3d7ae351256446042cb5a1f5403727e5732fd441ad93</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMobk7vniRHD3bmV9P2OIZTYToRPXgqaZtiZtrUJGXOv97OVm-Ch5CQ73lf-B4ATjGaYkTwpcjddN3k2ZRnmIQ82QNjHBIUdCfaH94cIz4CR86tESIhifkhGJEYY5JQPgYvj1KLD-GVqaGoCzi3W-eF1uqz_zMlXFklay8L-GD0tpIW3kntHdwo_wpntXLGW9OoHC6U1t30XvqNsW_uGByUQjt5MtwT8Ly4eprfBMvV9e18tgwE5YkPmEgyTos4xJwLXGLJci5pEQlJw91OjHHESJ6F3TBkiEYkkmFESVkwhkWR0Ak473sba95b6XxaKZdLrUUtTetSHCc0jiPE6D9QjjlmCYs7FPVobo1zVpZpY1Ul7DbFKN25Tzv36c59OrjvImdDe5tVsvgN_MjugIse-I6a1tadl7_7vgA_Do-3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861614948</pqid></control><display><type>article</type><title>Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks</title><source>American Chemical Society Journals</source><creator>Nie, Yijing ; Hao, Tongfan ; Gu, Zhouzhou ; Wang, Yue ; Liu, Yong ; Zhang, Ding ; Wei, Ya ; Li, Songjun ; Zhou, Zhiping</creator><creatorcontrib>Nie, Yijing ; Hao, Tongfan ; Gu, Zhouzhou ; Wang, Yue ; Liu, Yong ; Zhang, Ding ; Wei, Ya ; Li, Songjun ; Zhou, Zhiping</creatorcontrib><description>The coexistence of nanofillers and shear flow can influence crystallization of polymer melts. However, the microscopic mechanism of the effect is not completely revealed yet. Thus, dynamic Monte Carlo simulations were used to study the effect of the filler networks formed by one-dimensional nanofillers on relaxation and crystallization of oriented polymer melts. The filler networks restrict the relaxation of oriented polymers and impose confinement effect on the chains inside the filler networks, resulting in higher orientation and lower conformational entropy of the inside chains compared to those of the outside chains. Thus, the confined inside chains have stronger crystallizability. During crystallization, the confined chains are nucleated on the filler surface and then form nanohybrid shish–kebab structures. Furthermore, the effect of fillers and chain orientation closely depends on some factors, such as polymer–filler interaction, filler content, and filler spacing. Our simulation results are consistent with some experimental findings. Thus, these results can provide new insights into the mechanism of crystallization of filled polymers and also guide researchers to develop new polymer nanocomposites with high performance.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b12569</identifier><identifier>PMID: 28112936</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chains (polymeric) ; Computer simulation ; Crystallization ; Fillers ; Melts (crystal growth) ; Nanostructure ; Networks ; Orientation</subject><ispartof>The journal of physical chemistry. B, 2017-02, Vol.121 (6), p.1426-1437</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-4a9b63d85166a1f1e4c6e3d7ae351256446042cb5a1f5403727e5732fd441ad93</citedby><cites>FETCH-LOGICAL-a369t-4a9b63d85166a1f1e4c6e3d7ae351256446042cb5a1f5403727e5732fd441ad93</cites><orcidid>0000-0002-9550-3035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.6b12569$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b12569$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28112936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Yijing</creatorcontrib><creatorcontrib>Hao, Tongfan</creatorcontrib><creatorcontrib>Gu, Zhouzhou</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Wei, Ya</creatorcontrib><creatorcontrib>Li, Songjun</creatorcontrib><creatorcontrib>Zhou, Zhiping</creatorcontrib><title>Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The coexistence of nanofillers and shear flow can influence crystallization of polymer melts. However, the microscopic mechanism of the effect is not completely revealed yet. Thus, dynamic Monte Carlo simulations were used to study the effect of the filler networks formed by one-dimensional nanofillers on relaxation and crystallization of oriented polymer melts. The filler networks restrict the relaxation of oriented polymers and impose confinement effect on the chains inside the filler networks, resulting in higher orientation and lower conformational entropy of the inside chains compared to those of the outside chains. Thus, the confined inside chains have stronger crystallizability. During crystallization, the confined chains are nucleated on the filler surface and then form nanohybrid shish–kebab structures. Furthermore, the effect of fillers and chain orientation closely depends on some factors, such as polymer–filler interaction, filler content, and filler spacing. Our simulation results are consistent with some experimental findings. Thus, these results can provide new insights into the mechanism of crystallization of filled polymers and also guide researchers to develop new polymer nanocomposites with high performance.</description><subject>Chains (polymeric)</subject><subject>Computer simulation</subject><subject>Crystallization</subject><subject>Fillers</subject><subject>Melts (crystal growth)</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Orientation</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMobk7vniRHD3bmV9P2OIZTYToRPXgqaZtiZtrUJGXOv97OVm-Ch5CQ73lf-B4ATjGaYkTwpcjddN3k2ZRnmIQ82QNjHBIUdCfaH94cIz4CR86tESIhifkhGJEYY5JQPgYvj1KLD-GVqaGoCzi3W-eF1uqz_zMlXFklay8L-GD0tpIW3kntHdwo_wpntXLGW9OoHC6U1t30XvqNsW_uGByUQjt5MtwT8Ly4eprfBMvV9e18tgwE5YkPmEgyTos4xJwLXGLJci5pEQlJw91OjHHESJ6F3TBkiEYkkmFESVkwhkWR0Ak473sba95b6XxaKZdLrUUtTetSHCc0jiPE6D9QjjlmCYs7FPVobo1zVpZpY1Ul7DbFKN25Tzv36c59OrjvImdDe5tVsvgN_MjugIse-I6a1tadl7_7vgA_Do-3</recordid><startdate>20170216</startdate><enddate>20170216</enddate><creator>Nie, Yijing</creator><creator>Hao, Tongfan</creator><creator>Gu, Zhouzhou</creator><creator>Wang, Yue</creator><creator>Liu, Yong</creator><creator>Zhang, Ding</creator><creator>Wei, Ya</creator><creator>Li, Songjun</creator><creator>Zhou, Zhiping</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9550-3035</orcidid></search><sort><creationdate>20170216</creationdate><title>Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks</title><author>Nie, Yijing ; Hao, Tongfan ; Gu, Zhouzhou ; Wang, Yue ; Liu, Yong ; Zhang, Ding ; Wei, Ya ; Li, Songjun ; Zhou, Zhiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-4a9b63d85166a1f1e4c6e3d7ae351256446042cb5a1f5403727e5732fd441ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chains (polymeric)</topic><topic>Computer simulation</topic><topic>Crystallization</topic><topic>Fillers</topic><topic>Melts (crystal growth)</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Yijing</creatorcontrib><creatorcontrib>Hao, Tongfan</creatorcontrib><creatorcontrib>Gu, Zhouzhou</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Wei, Ya</creatorcontrib><creatorcontrib>Li, Songjun</creatorcontrib><creatorcontrib>Zhou, Zhiping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Yijing</au><au>Hao, Tongfan</au><au>Gu, Zhouzhou</au><au>Wang, Yue</au><au>Liu, Yong</au><au>Zhang, Ding</au><au>Wei, Ya</au><au>Li, Songjun</au><au>Zhou, Zhiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2017-02-16</date><risdate>2017</risdate><volume>121</volume><issue>6</issue><spage>1426</spage><epage>1437</epage><pages>1426-1437</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The coexistence of nanofillers and shear flow can influence crystallization of polymer melts. However, the microscopic mechanism of the effect is not completely revealed yet. Thus, dynamic Monte Carlo simulations were used to study the effect of the filler networks formed by one-dimensional nanofillers on relaxation and crystallization of oriented polymer melts. The filler networks restrict the relaxation of oriented polymers and impose confinement effect on the chains inside the filler networks, resulting in higher orientation and lower conformational entropy of the inside chains compared to those of the outside chains. Thus, the confined inside chains have stronger crystallizability. During crystallization, the confined chains are nucleated on the filler surface and then form nanohybrid shish–kebab structures. Furthermore, the effect of fillers and chain orientation closely depends on some factors, such as polymer–filler interaction, filler content, and filler spacing. Our simulation results are consistent with some experimental findings. Thus, these results can provide new insights into the mechanism of crystallization of filled polymers and also guide researchers to develop new polymer nanocomposites with high performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28112936</pmid><doi>10.1021/acs.jpcb.6b12569</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9550-3035</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2017-02, Vol.121 (6), p.1426-1437
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1893887043
source American Chemical Society Journals
subjects Chains (polymeric)
Computer simulation
Crystallization
Fillers
Melts (crystal growth)
Nanostructure
Networks
Orientation
title Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20and%20Crystallization%20of%20Oriented%20Polymer%20Melts%20with%20Anisotropic%20Filler%20Networks&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Nie,%20Yijing&rft.date=2017-02-16&rft.volume=121&rft.issue=6&rft.spage=1426&rft.epage=1437&rft.pages=1426-1437&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b12569&rft_dat=%3Cproquest_cross%3E1893887043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861614948&rft_id=info:pmid/28112936&rfr_iscdi=true