Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations

This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.2051-2061
Hauptverfasser: Han, Fengbo, Tang, Bin, Yan, Xu, Peng, Yifei, Kou, Hongchao, Li, Jinshan, Deng, Ying, Feng, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2061
container_issue 4
container_start_page 2051
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 48
creator Han, Fengbo
Tang, Bin
Yan, Xu
Peng, Yifei
Kou, Hongchao
Li, Jinshan
Deng, Ying
Feng, Yong
description This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.
doi_str_mv 10.1007/s11661-016-3946-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893886493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4318027741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-ffad6c88ce07771d7d9f8ede19bc90ff10672e1a738cbfbac9e2f7af9ed2785c3</originalsourceid><addsrcrecordid>eNp1kUFPGzEQhVdVkUqBH9CbpV64uHjWG3vNLY1CQUKABOVqOd5xa-TYqb2LyL-vQzigSj3NHL73ZvRe03wB9g0Yk2cFQAigDATlqhOUfWgOYdZxCqpjH-vOJKcz0fJPzedSnhhjoLg4bJ6v4oBxNKNPkdz5gNOGfMff5tmnTJIjD56KeaDdI5mHkLbnZPmywezXVVOIiQO5STEkawJZ5G0Z67wLpoze-nFLLnz0I5JlwB1P7v16Cq-XynFz4EwoePI2j5qfF8uHxSW9vv1xtZhfU9vBbKTOmUHYvrfIpJQwyEG5HgcEtbKKOQdMyBbBSN7blVsZq7B10jiFQyv7meVHzened5PTnwnLqNe-WAzBRExT0dAr3veiU7yiX_9Bn9KUY_2uUrJjXU1QVQr2lM2plIxOb2oaJm81ML1rQu-b0LUJvWtCs6pp95pS2fgL8zvn_4r-AtSpjPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874040739</pqid></control><display><type>article</type><title>Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations</title><source>SpringerLink Journals</source><creator>Han, Fengbo ; Tang, Bin ; Yan, Xu ; Peng, Yifei ; Kou, Hongchao ; Li, Jinshan ; Deng, Ying ; Feng, Yong</creator><creatorcontrib>Han, Fengbo ; Tang, Bin ; Yan, Xu ; Peng, Yifei ; Kou, Hongchao ; Li, Jinshan ; Deng, Ying ; Feng, Yong</creatorcontrib><description>This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-016-3946-0</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystals ; Evolution ; Finite element analysis ; Grain size ; Indentation ; Materials Science ; Mathematical analysis ; Metallic Materials ; Metallurgy ; Microstructure ; Nanoindentation ; Nanotechnology ; Simulation ; Slip ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Titanium base alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.2051-2061</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2017</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-ffad6c88ce07771d7d9f8ede19bc90ff10672e1a738cbfbac9e2f7af9ed2785c3</citedby><cites>FETCH-LOGICAL-c415t-ffad6c88ce07771d7d9f8ede19bc90ff10672e1a738cbfbac9e2f7af9ed2785c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-016-3946-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-016-3946-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Han, Fengbo</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Peng, Yifei</creatorcontrib><creatorcontrib>Kou, Hongchao</creatorcontrib><creatorcontrib>Li, Jinshan</creatorcontrib><creatorcontrib>Deng, Ying</creatorcontrib><creatorcontrib>Feng, Yong</creatorcontrib><title>Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Evolution</subject><subject>Finite element analysis</subject><subject>Grain size</subject><subject>Indentation</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Simulation</subject><subject>Slip</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFPGzEQhVdVkUqBH9CbpV64uHjWG3vNLY1CQUKABOVqOd5xa-TYqb2LyL-vQzigSj3NHL73ZvRe03wB9g0Yk2cFQAigDATlqhOUfWgOYdZxCqpjH-vOJKcz0fJPzedSnhhjoLg4bJ6v4oBxNKNPkdz5gNOGfMff5tmnTJIjD56KeaDdI5mHkLbnZPmywezXVVOIiQO5STEkawJZ5G0Z67wLpoze-nFLLnz0I5JlwB1P7v16Cq-XynFz4EwoePI2j5qfF8uHxSW9vv1xtZhfU9vBbKTOmUHYvrfIpJQwyEG5HgcEtbKKOQdMyBbBSN7blVsZq7B10jiFQyv7meVHzened5PTnwnLqNe-WAzBRExT0dAr3veiU7yiX_9Bn9KUY_2uUrJjXU1QVQr2lM2plIxOb2oaJm81ML1rQu-b0LUJvWtCs6pp95pS2fgL8zvn_4r-AtSpjPs</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Han, Fengbo</creator><creator>Tang, Bin</creator><creator>Yan, Xu</creator><creator>Peng, Yifei</creator><creator>Kou, Hongchao</creator><creator>Li, Jinshan</creator><creator>Deng, Ying</creator><creator>Feng, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations</title><author>Han, Fengbo ; Tang, Bin ; Yan, Xu ; Peng, Yifei ; Kou, Hongchao ; Li, Jinshan ; Deng, Ying ; Feng, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-ffad6c88ce07771d7d9f8ede19bc90ff10672e1a738cbfbac9e2f7af9ed2785c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Evolution</topic><topic>Finite element analysis</topic><topic>Grain size</topic><topic>Indentation</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Simulation</topic><topic>Slip</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Fengbo</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Peng, Yifei</creatorcontrib><creatorcontrib>Kou, Hongchao</creatorcontrib><creatorcontrib>Li, Jinshan</creatorcontrib><creatorcontrib>Deng, Ying</creatorcontrib><creatorcontrib>Feng, Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Fengbo</au><au>Tang, Bin</au><au>Yan, Xu</au><au>Peng, Yifei</au><au>Kou, Hongchao</au><au>Li, Jinshan</au><au>Deng, Ying</au><au>Feng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>48</volume><issue>4</issue><spage>2051</spage><epage>2061</epage><pages>2051-2061</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-016-3946-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.2051-2061
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1893886493
source SpringerLink Journals
subjects Alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystals
Evolution
Finite element analysis
Grain size
Indentation
Materials Science
Mathematical analysis
Metallic Materials
Metallurgy
Microstructure
Nanoindentation
Nanotechnology
Simulation
Slip
Structural Materials
Surfaces and Interfaces
Thin Films
Titanium base alloys
title Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indentation%20Pileup%20Behavior%20of%20Ti-6Al-4V%20Alloy:%20Experiments%20and%20Nonlocal%20Crystal%20Plasticity%20Finite%20Element%20Simulations&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Han,%20Fengbo&rft.date=2017-04-01&rft.volume=48&rft.issue=4&rft.spage=2051&rft.epage=2061&rft.pages=2051-2061&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-016-3946-0&rft_dat=%3Cproquest_cross%3E4318027741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874040739&rft_id=info:pmid/&rfr_iscdi=true