Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations
This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographi...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.2051-2061 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2061 |
---|---|
container_issue | 4 |
container_start_page | 2051 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 48 |
creator | Han, Fengbo Tang, Bin Yan, Xu Peng, Yifei Kou, Hongchao Li, Jinshan Deng, Ying Feng, Yong |
description | This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed. |
doi_str_mv | 10.1007/s11661-016-3946-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893886493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4318027741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-ffad6c88ce07771d7d9f8ede19bc90ff10672e1a738cbfbac9e2f7af9ed2785c3</originalsourceid><addsrcrecordid>eNp1kUFPGzEQhVdVkUqBH9CbpV64uHjWG3vNLY1CQUKABOVqOd5xa-TYqb2LyL-vQzigSj3NHL73ZvRe03wB9g0Yk2cFQAigDATlqhOUfWgOYdZxCqpjH-vOJKcz0fJPzedSnhhjoLg4bJ6v4oBxNKNPkdz5gNOGfMff5tmnTJIjD56KeaDdI5mHkLbnZPmywezXVVOIiQO5STEkawJZ5G0Z67wLpoze-nFLLnz0I5JlwB1P7v16Cq-XynFz4EwoePI2j5qfF8uHxSW9vv1xtZhfU9vBbKTOmUHYvrfIpJQwyEG5HgcEtbKKOQdMyBbBSN7blVsZq7B10jiFQyv7meVHzened5PTnwnLqNe-WAzBRExT0dAr3veiU7yiX_9Bn9KUY_2uUrJjXU1QVQr2lM2plIxOb2oaJm81ML1rQu-b0LUJvWtCs6pp95pS2fgL8zvn_4r-AtSpjPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874040739</pqid></control><display><type>article</type><title>Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations</title><source>SpringerLink Journals</source><creator>Han, Fengbo ; Tang, Bin ; Yan, Xu ; Peng, Yifei ; Kou, Hongchao ; Li, Jinshan ; Deng, Ying ; Feng, Yong</creator><creatorcontrib>Han, Fengbo ; Tang, Bin ; Yan, Xu ; Peng, Yifei ; Kou, Hongchao ; Li, Jinshan ; Deng, Ying ; Feng, Yong</creatorcontrib><description>This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-016-3946-0</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystals ; Evolution ; Finite element analysis ; Grain size ; Indentation ; Materials Science ; Mathematical analysis ; Metallic Materials ; Metallurgy ; Microstructure ; Nanoindentation ; Nanotechnology ; Simulation ; Slip ; Structural Materials ; Surfaces and Interfaces ; Thin Films ; Titanium base alloys</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.2051-2061</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2017</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-ffad6c88ce07771d7d9f8ede19bc90ff10672e1a738cbfbac9e2f7af9ed2785c3</citedby><cites>FETCH-LOGICAL-c415t-ffad6c88ce07771d7d9f8ede19bc90ff10672e1a738cbfbac9e2f7af9ed2785c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-016-3946-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-016-3946-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Han, Fengbo</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Peng, Yifei</creatorcontrib><creatorcontrib>Kou, Hongchao</creatorcontrib><creatorcontrib>Li, Jinshan</creatorcontrib><creatorcontrib>Deng, Ying</creatorcontrib><creatorcontrib>Feng, Yong</creatorcontrib><title>Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystals</subject><subject>Evolution</subject><subject>Finite element analysis</subject><subject>Grain size</subject><subject>Indentation</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microstructure</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Simulation</subject><subject>Slip</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium base alloys</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFPGzEQhVdVkUqBH9CbpV64uHjWG3vNLY1CQUKABOVqOd5xa-TYqb2LyL-vQzigSj3NHL73ZvRe03wB9g0Yk2cFQAigDATlqhOUfWgOYdZxCqpjH-vOJKcz0fJPzedSnhhjoLg4bJ6v4oBxNKNPkdz5gNOGfMff5tmnTJIjD56KeaDdI5mHkLbnZPmywezXVVOIiQO5STEkawJZ5G0Z67wLpoze-nFLLnz0I5JlwB1P7v16Cq-XynFz4EwoePI2j5qfF8uHxSW9vv1xtZhfU9vBbKTOmUHYvrfIpJQwyEG5HgcEtbKKOQdMyBbBSN7blVsZq7B10jiFQyv7meVHzened5PTnwnLqNe-WAzBRExT0dAr3veiU7yiX_9Bn9KUY_2uUrJjXU1QVQr2lM2plIxOb2oaJm81ML1rQu-b0LUJvWtCs6pp95pS2fgL8zvn_4r-AtSpjPs</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Han, Fengbo</creator><creator>Tang, Bin</creator><creator>Yan, Xu</creator><creator>Peng, Yifei</creator><creator>Kou, Hongchao</creator><creator>Li, Jinshan</creator><creator>Deng, Ying</creator><creator>Feng, Yong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations</title><author>Han, Fengbo ; Tang, Bin ; Yan, Xu ; Peng, Yifei ; Kou, Hongchao ; Li, Jinshan ; Deng, Ying ; Feng, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-ffad6c88ce07771d7d9f8ede19bc90ff10672e1a738cbfbac9e2f7af9ed2785c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystals</topic><topic>Evolution</topic><topic>Finite element analysis</topic><topic>Grain size</topic><topic>Indentation</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microstructure</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Simulation</topic><topic>Slip</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Fengbo</creatorcontrib><creatorcontrib>Tang, Bin</creatorcontrib><creatorcontrib>Yan, Xu</creatorcontrib><creatorcontrib>Peng, Yifei</creatorcontrib><creatorcontrib>Kou, Hongchao</creatorcontrib><creatorcontrib>Li, Jinshan</creatorcontrib><creatorcontrib>Deng, Ying</creatorcontrib><creatorcontrib>Feng, Yong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Fengbo</au><au>Tang, Bin</au><au>Yan, Xu</au><au>Peng, Yifei</au><au>Kou, Hongchao</au><au>Li, Jinshan</au><au>Deng, Ying</au><au>Feng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>48</volume><issue>4</issue><spage>2051</spage><epage>2061</epage><pages>2051-2061</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-016-3946-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2017-04, Vol.48 (4), p.2051-2061 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893886493 |
source | SpringerLink Journals |
subjects | Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Crystals Evolution Finite element analysis Grain size Indentation Materials Science Mathematical analysis Metallic Materials Metallurgy Microstructure Nanoindentation Nanotechnology Simulation Slip Structural Materials Surfaces and Interfaces Thin Films Titanium base alloys |
title | Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indentation%20Pileup%20Behavior%20of%20Ti-6Al-4V%20Alloy:%20Experiments%20and%20Nonlocal%20Crystal%20Plasticity%20Finite%20Element%20Simulations&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Han,%20Fengbo&rft.date=2017-04-01&rft.volume=48&rft.issue=4&rft.spage=2051&rft.epage=2061&rft.pages=2051-2061&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-016-3946-0&rft_dat=%3Cproquest_cross%3E4318027741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874040739&rft_id=info:pmid/&rfr_iscdi=true |