Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride

The use of 2D materials to improve the capabilities of electronic devices is a promising strategy that has recently gained much interest in both academia and industry. However, while the research in 2D metallic and semiconducting materials is well established, detailed knowledge and applications of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-03, Vol.27 (10), p.np-n/a
Hauptverfasser: Pan, Chengbin, Ji, Yanfeng, Xiao, Na, Hui, Fei, Tang, Kechao, Guo, Yuzheng, Xie, Xiaoming, Puglisi, Francesco M., Larcher, Luca, Miranda, Enrique, Jiang, Lanlan, Shi, Yuanyuan, Valov, Ilia, McIntyre, Paul C., Waser, Rainer, Lanza, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page np
container_title Advanced functional materials
container_volume 27
creator Pan, Chengbin
Ji, Yanfeng
Xiao, Na
Hui, Fei
Tang, Kechao
Guo, Yuzheng
Xie, Xiaoming
Puglisi, Francesco M.
Larcher, Luca
Miranda, Enrique
Jiang, Lanlan
Shi, Yuanyuan
Valov, Ilia
McIntyre, Paul C.
Waser, Rainer
Lanza, Mario
description The use of 2D materials to improve the capabilities of electronic devices is a promising strategy that has recently gained much interest in both academia and industry. However, while the research in 2D metallic and semiconducting materials is well established, detailed knowledge and applications of 2D insulators are still scarce. In this paper, the presence of resistive switching (RS) in multilayer hexagonal boron nitride (h‐BN) is studied using different electrode materials, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered. The devices show the coexistence of forming free bipolar and threshold‐type RS with low operation voltages down to 0.4 V, high current on/off ratio up to 106, and long retention times above 10 h, as well as low variability. The RS is driven by the grain boundaries (GBs) in the polycrystalline h‐BN stack, which allow the penetration of metallic ions from adjacent electrodes. This reaction can be boosted by the generation of B vacancies, which are more abundant at the GBs. To the best of our knowledge, h‐BN is the first 2D material showing the coexistence of bipolar and threshold RS, which may open the door to additional functionalities and applications. The presence of resistive switching in multilayer hexagonal boron nitride (h‐BN) is studied using metallic and graphene electrodes, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered.
doi_str_mv 10.1002/adfm.201604811
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893885048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893885048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3901-ef37e8cd5e149e71a2c98082c887ece524f919ab313c92092dbcd7f6fc3d39c23</originalsourceid><addsrcrecordid>eNqFkU1PGzEQhlcVSIXQa8-WuHBJ6rH3wz4mKYRKfEhApd5Wxp4ljhw72LuFSD30J_Q38kvYKChIvXCaGc3zvhrNm2VfgY6AUvZNmWY5YhRKmguAT9kBlFAOOWVib9fDr8_ZYUoLSqGqeH6Q_ZkGfLapRa-RhIbMorL-5e-_Sei8UdFi6odxShvEkIldBaciUd6Qu3nENA_OkBvcrO1vJLdPttVz6x-I9eSyc611ao2RnOOzegheOTIJMXhyZdtoDR5l-41yCb-81UH28-z0bno-vLie_ZiOL4aaSwpDbHiFQpsCIZdYgWJaCiqYFqJCjQXLGwlS3XPgWjIqmbnXpmrKRnPDpWZ8kJ1sfVcxPHaY2nppk0bnlMfQpRqE5EIU_d969Pg_dBG62F_eU713Dqwoi54abSkdQ0oRm3oV7VLFdQ203oRRb8Kod2H0ArkVPFmH6w_oevz97PJd-wqQTJGh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920412565</pqid></control><display><type>article</type><title>Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Pan, Chengbin ; Ji, Yanfeng ; Xiao, Na ; Hui, Fei ; Tang, Kechao ; Guo, Yuzheng ; Xie, Xiaoming ; Puglisi, Francesco M. ; Larcher, Luca ; Miranda, Enrique ; Jiang, Lanlan ; Shi, Yuanyuan ; Valov, Ilia ; McIntyre, Paul C. ; Waser, Rainer ; Lanza, Mario</creator><creatorcontrib>Pan, Chengbin ; Ji, Yanfeng ; Xiao, Na ; Hui, Fei ; Tang, Kechao ; Guo, Yuzheng ; Xie, Xiaoming ; Puglisi, Francesco M. ; Larcher, Luca ; Miranda, Enrique ; Jiang, Lanlan ; Shi, Yuanyuan ; Valov, Ilia ; McIntyre, Paul C. ; Waser, Rainer ; Lanza, Mario</creatorcontrib><description>The use of 2D materials to improve the capabilities of electronic devices is a promising strategy that has recently gained much interest in both academia and industry. However, while the research in 2D metallic and semiconducting materials is well established, detailed knowledge and applications of 2D insulators are still scarce. In this paper, the presence of resistive switching (RS) in multilayer hexagonal boron nitride (h‐BN) is studied using different electrode materials, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered. The devices show the coexistence of forming free bipolar and threshold‐type RS with low operation voltages down to 0.4 V, high current on/off ratio up to 106, and long retention times above 10 h, as well as low variability. The RS is driven by the grain boundaries (GBs) in the polycrystalline h‐BN stack, which allow the penetration of metallic ions from adjacent electrodes. This reaction can be boosted by the generation of B vacancies, which are more abundant at the GBs. To the best of our knowledge, h‐BN is the first 2D material showing the coexistence of bipolar and threshold RS, which may open the door to additional functionalities and applications. The presence of resistive switching in multilayer hexagonal boron nitride (h‐BN) is studied using metallic and graphene electrodes, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201604811</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bipolarity ; Boron nitride ; Devices ; Electrode materials ; Electrodes ; Electronic devices ; Grain boundaries ; Graphene ; hexagonal boron nitride ; High current ; Insulators ; Materials science ; Multilayers ; Random access ; Random access memory ; resistive switching ; RRAM ; Switching ; Thresholds ; Vacancies ; Vanadium</subject><ispartof>Advanced functional materials, 2017-03, Vol.27 (10), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3901-ef37e8cd5e149e71a2c98082c887ece524f919ab313c92092dbcd7f6fc3d39c23</citedby><cites>FETCH-LOGICAL-c3901-ef37e8cd5e149e71a2c98082c887ece524f919ab313c92092dbcd7f6fc3d39c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201604811$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201604811$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pan, Chengbin</creatorcontrib><creatorcontrib>Ji, Yanfeng</creatorcontrib><creatorcontrib>Xiao, Na</creatorcontrib><creatorcontrib>Hui, Fei</creatorcontrib><creatorcontrib>Tang, Kechao</creatorcontrib><creatorcontrib>Guo, Yuzheng</creatorcontrib><creatorcontrib>Xie, Xiaoming</creatorcontrib><creatorcontrib>Puglisi, Francesco M.</creatorcontrib><creatorcontrib>Larcher, Luca</creatorcontrib><creatorcontrib>Miranda, Enrique</creatorcontrib><creatorcontrib>Jiang, Lanlan</creatorcontrib><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Valov, Ilia</creatorcontrib><creatorcontrib>McIntyre, Paul C.</creatorcontrib><creatorcontrib>Waser, Rainer</creatorcontrib><creatorcontrib>Lanza, Mario</creatorcontrib><title>Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride</title><title>Advanced functional materials</title><description>The use of 2D materials to improve the capabilities of electronic devices is a promising strategy that has recently gained much interest in both academia and industry. However, while the research in 2D metallic and semiconducting materials is well established, detailed knowledge and applications of 2D insulators are still scarce. In this paper, the presence of resistive switching (RS) in multilayer hexagonal boron nitride (h‐BN) is studied using different electrode materials, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered. The devices show the coexistence of forming free bipolar and threshold‐type RS with low operation voltages down to 0.4 V, high current on/off ratio up to 106, and long retention times above 10 h, as well as low variability. The RS is driven by the grain boundaries (GBs) in the polycrystalline h‐BN stack, which allow the penetration of metallic ions from adjacent electrodes. This reaction can be boosted by the generation of B vacancies, which are more abundant at the GBs. To the best of our knowledge, h‐BN is the first 2D material showing the coexistence of bipolar and threshold RS, which may open the door to additional functionalities and applications. The presence of resistive switching in multilayer hexagonal boron nitride (h‐BN) is studied using metallic and graphene electrodes, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered.</description><subject>bipolarity</subject><subject>Boron nitride</subject><subject>Devices</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electronic devices</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>hexagonal boron nitride</subject><subject>High current</subject><subject>Insulators</subject><subject>Materials science</subject><subject>Multilayers</subject><subject>Random access</subject><subject>Random access memory</subject><subject>resistive switching</subject><subject>RRAM</subject><subject>Switching</subject><subject>Thresholds</subject><subject>Vacancies</subject><subject>Vanadium</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PGzEQhlcVSIXQa8-WuHBJ6rH3wz4mKYRKfEhApd5Wxp4ljhw72LuFSD30J_Q38kvYKChIvXCaGc3zvhrNm2VfgY6AUvZNmWY5YhRKmguAT9kBlFAOOWVib9fDr8_ZYUoLSqGqeH6Q_ZkGfLapRa-RhIbMorL-5e-_Sei8UdFi6odxShvEkIldBaciUd6Qu3nENA_OkBvcrO1vJLdPttVz6x-I9eSyc611ao2RnOOzegheOTIJMXhyZdtoDR5l-41yCb-81UH28-z0bno-vLie_ZiOL4aaSwpDbHiFQpsCIZdYgWJaCiqYFqJCjQXLGwlS3XPgWjIqmbnXpmrKRnPDpWZ8kJ1sfVcxPHaY2nppk0bnlMfQpRqE5EIU_d969Pg_dBG62F_eU713Dqwoi54abSkdQ0oRm3oV7VLFdQ203oRRb8Kod2H0ArkVPFmH6w_oevz97PJd-wqQTJGh</recordid><startdate>20170310</startdate><enddate>20170310</enddate><creator>Pan, Chengbin</creator><creator>Ji, Yanfeng</creator><creator>Xiao, Na</creator><creator>Hui, Fei</creator><creator>Tang, Kechao</creator><creator>Guo, Yuzheng</creator><creator>Xie, Xiaoming</creator><creator>Puglisi, Francesco M.</creator><creator>Larcher, Luca</creator><creator>Miranda, Enrique</creator><creator>Jiang, Lanlan</creator><creator>Shi, Yuanyuan</creator><creator>Valov, Ilia</creator><creator>McIntyre, Paul C.</creator><creator>Waser, Rainer</creator><creator>Lanza, Mario</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170310</creationdate><title>Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride</title><author>Pan, Chengbin ; Ji, Yanfeng ; Xiao, Na ; Hui, Fei ; Tang, Kechao ; Guo, Yuzheng ; Xie, Xiaoming ; Puglisi, Francesco M. ; Larcher, Luca ; Miranda, Enrique ; Jiang, Lanlan ; Shi, Yuanyuan ; Valov, Ilia ; McIntyre, Paul C. ; Waser, Rainer ; Lanza, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3901-ef37e8cd5e149e71a2c98082c887ece524f919ab313c92092dbcd7f6fc3d39c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>bipolarity</topic><topic>Boron nitride</topic><topic>Devices</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electronic devices</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>hexagonal boron nitride</topic><topic>High current</topic><topic>Insulators</topic><topic>Materials science</topic><topic>Multilayers</topic><topic>Random access</topic><topic>Random access memory</topic><topic>resistive switching</topic><topic>RRAM</topic><topic>Switching</topic><topic>Thresholds</topic><topic>Vacancies</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Chengbin</creatorcontrib><creatorcontrib>Ji, Yanfeng</creatorcontrib><creatorcontrib>Xiao, Na</creatorcontrib><creatorcontrib>Hui, Fei</creatorcontrib><creatorcontrib>Tang, Kechao</creatorcontrib><creatorcontrib>Guo, Yuzheng</creatorcontrib><creatorcontrib>Xie, Xiaoming</creatorcontrib><creatorcontrib>Puglisi, Francesco M.</creatorcontrib><creatorcontrib>Larcher, Luca</creatorcontrib><creatorcontrib>Miranda, Enrique</creatorcontrib><creatorcontrib>Jiang, Lanlan</creatorcontrib><creatorcontrib>Shi, Yuanyuan</creatorcontrib><creatorcontrib>Valov, Ilia</creatorcontrib><creatorcontrib>McIntyre, Paul C.</creatorcontrib><creatorcontrib>Waser, Rainer</creatorcontrib><creatorcontrib>Lanza, Mario</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Chengbin</au><au>Ji, Yanfeng</au><au>Xiao, Na</au><au>Hui, Fei</au><au>Tang, Kechao</au><au>Guo, Yuzheng</au><au>Xie, Xiaoming</au><au>Puglisi, Francesco M.</au><au>Larcher, Luca</au><au>Miranda, Enrique</au><au>Jiang, Lanlan</au><au>Shi, Yuanyuan</au><au>Valov, Ilia</au><au>McIntyre, Paul C.</au><au>Waser, Rainer</au><au>Lanza, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride</atitle><jtitle>Advanced functional materials</jtitle><date>2017-03-10</date><risdate>2017</risdate><volume>27</volume><issue>10</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The use of 2D materials to improve the capabilities of electronic devices is a promising strategy that has recently gained much interest in both academia and industry. However, while the research in 2D metallic and semiconducting materials is well established, detailed knowledge and applications of 2D insulators are still scarce. In this paper, the presence of resistive switching (RS) in multilayer hexagonal boron nitride (h‐BN) is studied using different electrode materials, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered. The devices show the coexistence of forming free bipolar and threshold‐type RS with low operation voltages down to 0.4 V, high current on/off ratio up to 106, and long retention times above 10 h, as well as low variability. The RS is driven by the grain boundaries (GBs) in the polycrystalline h‐BN stack, which allow the penetration of metallic ions from adjacent electrodes. This reaction can be boosted by the generation of B vacancies, which are more abundant at the GBs. To the best of our knowledge, h‐BN is the first 2D material showing the coexistence of bipolar and threshold RS, which may open the door to additional functionalities and applications. The presence of resistive switching in multilayer hexagonal boron nitride (h‐BN) is studied using metallic and graphene electrodes, and a family of h‐BN‐based resistive random access memories with tunable capabilities is engineered.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201604811</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2017-03, Vol.27 (10), p.np-n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1893885048
source Wiley Online Library - AutoHoldings Journals
subjects bipolarity
Boron nitride
Devices
Electrode materials
Electrodes
Electronic devices
Grain boundaries
Graphene
hexagonal boron nitride
High current
Insulators
Materials science
Multilayers
Random access
Random access memory
resistive switching
RRAM
Switching
Thresholds
Vacancies
Vanadium
title Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence%20of%20Grain%E2%80%90Boundaries%E2%80%90Assisted%20Bipolar%20and%20Threshold%20Resistive%20Switching%20in%20Multilayer%20Hexagonal%20Boron%20Nitride&rft.jtitle=Advanced%20functional%20materials&rft.au=Pan,%20Chengbin&rft.date=2017-03-10&rft.volume=27&rft.issue=10&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201604811&rft_dat=%3Cproquest_cross%3E1893885048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920412565&rft_id=info:pmid/&rfr_iscdi=true