Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics
We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2016-12, Vol.117 (27), p.273601-273601, Article 273601 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273601 |
---|---|
container_issue | 27 |
container_start_page | 273601 |
container_title | Physical review letters |
container_volume | 117 |
creator | Rashid, Muddassar Tufarelli, Tommaso Bateman, James Vovrosh, Jamie Hempston, David Kim, M S Ulbricht, Hendrik |
description | We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times. |
doi_str_mv | 10.1103/PhysRevLett.117.273601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893884784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893884784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-7629491bad4dc026532ee518fb738e67fa566c00cb82e26e59cf0e01740a18bf3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwC1WWbFLGsWM7S1SVhxSpqC3ryHEmalAeJXYr2q_HVQtiyWpGc--8DiFjChNKgT28rfd2gbsUnfMFOYkkE0AvyJCCTEJJKb8kQwBGwwRADsiNtR8AQCOhrskgUqC45GJI5rOvDfZVg63TdbBAXVcH7aquDboy0MFqjX3jheXnFvGARbB02uFRS3FXHfMimG9c16BZ67Yy9pZclbq2eHeOI_L-NFtNX8J0_vw6fUxDwzh3oRRRwhOa64IXBiIRswgxpqrMJVMoZKljIQyAyVWEkcA4MSUgUMlBU5WXbETuT3M3fedvsy5rKmuwrnWL3dZmVCVM-R8V_4dVUO7xKeGt4mQ1fWdtj2W28Wx0v88oZEfu2R_uviCzE3ffOD7v2OYNFr9tP6DZNzzLgTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861473686</pqid></control><display><type>article</type><title>Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Rashid, Muddassar ; Tufarelli, Tommaso ; Bateman, James ; Vovrosh, Jamie ; Hempston, David ; Kim, M S ; Ulbricht, Hendrik</creator><creatorcontrib>Rashid, Muddassar ; Tufarelli, Tommaso ; Bateman, James ; Vovrosh, Jamie ; Hempston, David ; Kim, M S ; Ulbricht, Hendrik</creatorcontrib><description>We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.117.273601</identifier><identifier>PMID: 28084746</identifier><language>eng</language><publisher>United States</publisher><subject>Center of mass ; Compressing ; Motional ; Nanostructure ; Opto-mechanics ; Statistical mechanics ; Switching ; Trapping</subject><ispartof>Physical review letters, 2016-12, Vol.117 (27), p.273601-273601, Article 273601</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-7629491bad4dc026532ee518fb738e67fa566c00cb82e26e59cf0e01740a18bf3</citedby><cites>FETCH-LOGICAL-c344t-7629491bad4dc026532ee518fb738e67fa566c00cb82e26e59cf0e01740a18bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28084746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rashid, Muddassar</creatorcontrib><creatorcontrib>Tufarelli, Tommaso</creatorcontrib><creatorcontrib>Bateman, James</creatorcontrib><creatorcontrib>Vovrosh, Jamie</creatorcontrib><creatorcontrib>Hempston, David</creatorcontrib><creatorcontrib>Kim, M S</creatorcontrib><creatorcontrib>Ulbricht, Hendrik</creatorcontrib><title>Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.</description><subject>Center of mass</subject><subject>Compressing</subject><subject>Motional</subject><subject>Nanostructure</subject><subject>Opto-mechanics</subject><subject>Statistical mechanics</subject><subject>Switching</subject><subject>Trapping</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EoqXwC1WWbFLGsWM7S1SVhxSpqC3ryHEmalAeJXYr2q_HVQtiyWpGc--8DiFjChNKgT28rfd2gbsUnfMFOYkkE0AvyJCCTEJJKb8kQwBGwwRADsiNtR8AQCOhrskgUqC45GJI5rOvDfZVg63TdbBAXVcH7aquDboy0MFqjX3jheXnFvGARbB02uFRS3FXHfMimG9c16BZ67Yy9pZclbq2eHeOI_L-NFtNX8J0_vw6fUxDwzh3oRRRwhOa64IXBiIRswgxpqrMJVMoZKljIQyAyVWEkcA4MSUgUMlBU5WXbETuT3M3fedvsy5rKmuwrnWL3dZmVCVM-R8V_4dVUO7xKeGt4mQ1fWdtj2W28Wx0v88oZEfu2R_uviCzE3ffOD7v2OYNFr9tP6DZNzzLgTw</recordid><startdate>20161230</startdate><enddate>20161230</enddate><creator>Rashid, Muddassar</creator><creator>Tufarelli, Tommaso</creator><creator>Bateman, James</creator><creator>Vovrosh, Jamie</creator><creator>Hempston, David</creator><creator>Kim, M S</creator><creator>Ulbricht, Hendrik</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161230</creationdate><title>Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics</title><author>Rashid, Muddassar ; Tufarelli, Tommaso ; Bateman, James ; Vovrosh, Jamie ; Hempston, David ; Kim, M S ; Ulbricht, Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-7629491bad4dc026532ee518fb738e67fa566c00cb82e26e59cf0e01740a18bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Center of mass</topic><topic>Compressing</topic><topic>Motional</topic><topic>Nanostructure</topic><topic>Opto-mechanics</topic><topic>Statistical mechanics</topic><topic>Switching</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Muddassar</creatorcontrib><creatorcontrib>Tufarelli, Tommaso</creatorcontrib><creatorcontrib>Bateman, James</creatorcontrib><creatorcontrib>Vovrosh, Jamie</creatorcontrib><creatorcontrib>Hempston, David</creatorcontrib><creatorcontrib>Kim, M S</creatorcontrib><creatorcontrib>Ulbricht, Hendrik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Muddassar</au><au>Tufarelli, Tommaso</au><au>Bateman, James</au><au>Vovrosh, Jamie</au><au>Hempston, David</au><au>Kim, M S</au><au>Ulbricht, Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-12-30</date><risdate>2016</risdate><volume>117</volume><issue>27</issue><spage>273601</spage><epage>273601</epage><pages>273601-273601</pages><artnum>273601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.</abstract><cop>United States</cop><pmid>28084746</pmid><doi>10.1103/PhysRevLett.117.273601</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2016-12, Vol.117 (27), p.273601-273601, Article 273601 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893884784 |
source | APS: American Physical Society E-Journals (Physics) |
subjects | Center of mass Compressing Motional Nanostructure Opto-mechanics Statistical mechanics Switching Trapping |
title | Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Realization%20of%20a%20Thermal%20Squeezed%20State%20of%20Levitated%20Optomechanics&rft.jtitle=Physical%20review%20letters&rft.au=Rashid,%20Muddassar&rft.date=2016-12-30&rft.volume=117&rft.issue=27&rft.spage=273601&rft.epage=273601&rft.pages=273601-273601&rft.artnum=273601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.117.273601&rft_dat=%3Cproquest_cross%3E1893884784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861473686&rft_id=info:pmid/28084746&rfr_iscdi=true |