Feature Adaptive Correlation Tracking

Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2017/03/01, Vol.E100.D(3), pp.594-597
Hauptverfasser: XU, Yulong, LI, Yang, WANG, Jiabao, MIAO, Zhuang, LI, Hang, ZHANG, Yafei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 3
container_start_page 594
container_title IEICE Transactions on Information and Systems
container_volume E100.D
creator XU, Yulong
LI, Yang
WANG, Jiabao
MIAO, Zhuang
LI, Hang
ZHANG, Yafei
description Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.
doi_str_mv 10.1587/transinf.2016EDL8164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893881978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014550457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-fccdfb31ad66b95a71e57084ea63491d2ac6db7d279cd7425b5e9c5b2ef8c4bd3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQQBdRsFb_gYeCCF5Sd5L9yrH0Q4WCIPW8bHYnNTVN6u5W8N8bqa3F08zhvWF4hFwDHQJX8j5604SqKYcpBTGdzBUIdkJ6IBlPIBNwSno0B5EonqXn5CKEFaWgUuA9cjtDE7ceByNnNrH6xMG49R5rE6u2GSy8se9Vs7wkZ6WpA179zj55nU0X48dk_vzwNB7NEysojUlprSuLDIwTosi5kYBcUsXQiIzl4FJjhSukS2VunWQpLzjmlhcplsqywmV9cre7u_HtxxZD1OsqWKxr02C7DRpUnikFuVQdevMPXbVb33Tf6a4C45wyLjuK7Sjr2xA8lnrjq7XxXxqo_mmn9-30UbtOe9lpqxDNEg-S8bGyNf5JU6BUT3S2X46OHGD7ZrzGJvsGgSaAnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014550457</pqid></control><display><type>article</type><title>Feature Adaptive Correlation Tracking</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>XU, Yulong ; LI, Yang ; WANG, Jiabao ; MIAO, Zhuang ; LI, Hang ; ZHANG, Yafei</creator><creatorcontrib>XU, Yulong ; LI, Yang ; WANG, Jiabao ; MIAO, Zhuang ; LI, Hang ; ZHANG, Yafei</creatorcontrib><description>Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016EDL8164</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>convolutional neural networks ; Correlation ; correlation filter ; Feature extraction ; feature selection ; Optical tracking ; Representations ; Robustness ; scale estimation ; State of the art ; Tasks ; Tracking ; Translations ; visual tracking</subject><ispartof>IEICE Transactions on Information and Systems, 2017/03/01, Vol.E100.D(3), pp.594-597</ispartof><rights>2017 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-fccdfb31ad66b95a71e57084ea63491d2ac6db7d279cd7425b5e9c5b2ef8c4bd3</citedby><cites>FETCH-LOGICAL-c600t-fccdfb31ad66b95a71e57084ea63491d2ac6db7d279cd7425b5e9c5b2ef8c4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>XU, Yulong</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><creatorcontrib>WANG, Jiabao</creatorcontrib><creatorcontrib>MIAO, Zhuang</creatorcontrib><creatorcontrib>LI, Hang</creatorcontrib><creatorcontrib>ZHANG, Yafei</creatorcontrib><title>Feature Adaptive Correlation Tracking</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.</description><subject>convolutional neural networks</subject><subject>Correlation</subject><subject>correlation filter</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Optical tracking</subject><subject>Representations</subject><subject>Robustness</subject><subject>scale estimation</subject><subject>State of the art</subject><subject>Tasks</subject><subject>Tracking</subject><subject>Translations</subject><subject>visual tracking</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQQBdRsFb_gYeCCF5Sd5L9yrH0Q4WCIPW8bHYnNTVN6u5W8N8bqa3F08zhvWF4hFwDHQJX8j5604SqKYcpBTGdzBUIdkJ6IBlPIBNwSno0B5EonqXn5CKEFaWgUuA9cjtDE7ceByNnNrH6xMG49R5rE6u2GSy8se9Vs7wkZ6WpA179zj55nU0X48dk_vzwNB7NEysojUlprSuLDIwTosi5kYBcUsXQiIzl4FJjhSukS2VunWQpLzjmlhcplsqywmV9cre7u_HtxxZD1OsqWKxr02C7DRpUnikFuVQdevMPXbVb33Tf6a4C45wyLjuK7Sjr2xA8lnrjq7XxXxqo_mmn9-30UbtOe9lpqxDNEg-S8bGyNf5JU6BUT3S2X46OHGD7ZrzGJvsGgSaAnA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>XU, Yulong</creator><creator>LI, Yang</creator><creator>WANG, Jiabao</creator><creator>MIAO, Zhuang</creator><creator>LI, Hang</creator><creator>ZHANG, Yafei</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Feature Adaptive Correlation Tracking</title><author>XU, Yulong ; LI, Yang ; WANG, Jiabao ; MIAO, Zhuang ; LI, Hang ; ZHANG, Yafei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-fccdfb31ad66b95a71e57084ea63491d2ac6db7d279cd7425b5e9c5b2ef8c4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>convolutional neural networks</topic><topic>Correlation</topic><topic>correlation filter</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Optical tracking</topic><topic>Representations</topic><topic>Robustness</topic><topic>scale estimation</topic><topic>State of the art</topic><topic>Tasks</topic><topic>Tracking</topic><topic>Translations</topic><topic>visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, Yulong</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><creatorcontrib>WANG, Jiabao</creatorcontrib><creatorcontrib>MIAO, Zhuang</creatorcontrib><creatorcontrib>LI, Hang</creatorcontrib><creatorcontrib>ZHANG, Yafei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XU, Yulong</au><au>LI, Yang</au><au>WANG, Jiabao</au><au>MIAO, Zhuang</au><au>LI, Hang</au><au>ZHANG, Yafei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Adaptive Correlation Tracking</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>E100.D</volume><issue>3</issue><spage>594</spage><epage>597</epage><pages>594-597</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016EDL8164</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2017/03/01, Vol.E100.D(3), pp.594-597
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_miscellaneous_1893881978
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects convolutional neural networks
Correlation
correlation filter
Feature extraction
feature selection
Optical tracking
Representations
Robustness
scale estimation
State of the art
Tasks
Tracking
Translations
visual tracking
title Feature Adaptive Correlation Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Adaptive%20Correlation%20Tracking&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=XU,%20Yulong&rft.date=2017-01-01&rft.volume=E100.D&rft.issue=3&rft.spage=594&rft.epage=597&rft.pages=594-597&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016EDL8164&rft_dat=%3Cproquest_cross%3E2014550457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014550457&rft_id=info:pmid/&rfr_iscdi=true