Feature Adaptive Correlation Tracking
Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adap...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2017/03/01, Vol.E100.D(3), pp.594-597 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 3 |
container_start_page | 594 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E100.D |
creator | XU, Yulong LI, Yang WANG, Jiabao MIAO, Zhuang LI, Hang ZHANG, Yafei |
description | Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness. |
doi_str_mv | 10.1587/transinf.2016EDL8164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893881978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014550457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-fccdfb31ad66b95a71e57084ea63491d2ac6db7d279cd7425b5e9c5b2ef8c4bd3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQQBdRsFb_gYeCCF5Sd5L9yrH0Q4WCIPW8bHYnNTVN6u5W8N8bqa3F08zhvWF4hFwDHQJX8j5604SqKYcpBTGdzBUIdkJ6IBlPIBNwSno0B5EonqXn5CKEFaWgUuA9cjtDE7ceByNnNrH6xMG49R5rE6u2GSy8se9Vs7wkZ6WpA179zj55nU0X48dk_vzwNB7NEysojUlprSuLDIwTosi5kYBcUsXQiIzl4FJjhSukS2VunWQpLzjmlhcplsqywmV9cre7u_HtxxZD1OsqWKxr02C7DRpUnikFuVQdevMPXbVb33Tf6a4C45wyLjuK7Sjr2xA8lnrjq7XxXxqo_mmn9-30UbtOe9lpqxDNEg-S8bGyNf5JU6BUT3S2X46OHGD7ZrzGJvsGgSaAnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014550457</pqid></control><display><type>article</type><title>Feature Adaptive Correlation Tracking</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>XU, Yulong ; LI, Yang ; WANG, Jiabao ; MIAO, Zhuang ; LI, Hang ; ZHANG, Yafei</creator><creatorcontrib>XU, Yulong ; LI, Yang ; WANG, Jiabao ; MIAO, Zhuang ; LI, Hang ; ZHANG, Yafei</creatorcontrib><description>Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016EDL8164</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>convolutional neural networks ; Correlation ; correlation filter ; Feature extraction ; feature selection ; Optical tracking ; Representations ; Robustness ; scale estimation ; State of the art ; Tasks ; Tracking ; Translations ; visual tracking</subject><ispartof>IEICE Transactions on Information and Systems, 2017/03/01, Vol.E100.D(3), pp.594-597</ispartof><rights>2017 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-fccdfb31ad66b95a71e57084ea63491d2ac6db7d279cd7425b5e9c5b2ef8c4bd3</citedby><cites>FETCH-LOGICAL-c600t-fccdfb31ad66b95a71e57084ea63491d2ac6db7d279cd7425b5e9c5b2ef8c4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>XU, Yulong</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><creatorcontrib>WANG, Jiabao</creatorcontrib><creatorcontrib>MIAO, Zhuang</creatorcontrib><creatorcontrib>LI, Hang</creatorcontrib><creatorcontrib>ZHANG, Yafei</creatorcontrib><title>Feature Adaptive Correlation Tracking</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.</description><subject>convolutional neural networks</subject><subject>Correlation</subject><subject>correlation filter</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Optical tracking</subject><subject>Representations</subject><subject>Robustness</subject><subject>scale estimation</subject><subject>State of the art</subject><subject>Tasks</subject><subject>Tracking</subject><subject>Translations</subject><subject>visual tracking</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQQBdRsFb_gYeCCF5Sd5L9yrH0Q4WCIPW8bHYnNTVN6u5W8N8bqa3F08zhvWF4hFwDHQJX8j5604SqKYcpBTGdzBUIdkJ6IBlPIBNwSno0B5EonqXn5CKEFaWgUuA9cjtDE7ceByNnNrH6xMG49R5rE6u2GSy8se9Vs7wkZ6WpA179zj55nU0X48dk_vzwNB7NEysojUlprSuLDIwTosi5kYBcUsXQiIzl4FJjhSukS2VunWQpLzjmlhcplsqywmV9cre7u_HtxxZD1OsqWKxr02C7DRpUnikFuVQdevMPXbVb33Tf6a4C45wyLjuK7Sjr2xA8lnrjq7XxXxqo_mmn9-30UbtOe9lpqxDNEg-S8bGyNf5JU6BUT3S2X46OHGD7ZrzGJvsGgSaAnA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>XU, Yulong</creator><creator>LI, Yang</creator><creator>WANG, Jiabao</creator><creator>MIAO, Zhuang</creator><creator>LI, Hang</creator><creator>ZHANG, Yafei</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Feature Adaptive Correlation Tracking</title><author>XU, Yulong ; LI, Yang ; WANG, Jiabao ; MIAO, Zhuang ; LI, Hang ; ZHANG, Yafei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-fccdfb31ad66b95a71e57084ea63491d2ac6db7d279cd7425b5e9c5b2ef8c4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>convolutional neural networks</topic><topic>Correlation</topic><topic>correlation filter</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Optical tracking</topic><topic>Representations</topic><topic>Robustness</topic><topic>scale estimation</topic><topic>State of the art</topic><topic>Tasks</topic><topic>Tracking</topic><topic>Translations</topic><topic>visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, Yulong</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><creatorcontrib>WANG, Jiabao</creatorcontrib><creatorcontrib>MIAO, Zhuang</creatorcontrib><creatorcontrib>LI, Hang</creatorcontrib><creatorcontrib>ZHANG, Yafei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XU, Yulong</au><au>LI, Yang</au><au>WANG, Jiabao</au><au>MIAO, Zhuang</au><au>LI, Hang</au><au>ZHANG, Yafei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Adaptive Correlation Tracking</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>E100.D</volume><issue>3</issue><spage>594</spage><epage>597</epage><pages>594-597</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016EDL8164</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2017/03/01, Vol.E100.D(3), pp.594-597 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893881978 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | convolutional neural networks Correlation correlation filter Feature extraction feature selection Optical tracking Representations Robustness scale estimation State of the art Tasks Tracking Translations visual tracking |
title | Feature Adaptive Correlation Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Adaptive%20Correlation%20Tracking&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=XU,%20Yulong&rft.date=2017-01-01&rft.volume=E100.D&rft.issue=3&rft.spage=594&rft.epage=597&rft.pages=594-597&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016EDL8164&rft_dat=%3Cproquest_cross%3E2014550457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014550457&rft_id=info:pmid/&rfr_iscdi=true |