What Causes a Neuron to Spike?

The computation performed by a neuron can be formulated as a combination of dimensional reduction in stimulus space and the nonlinearity inherent in a spiking output. White noise stimulus and reverse correlation (the spike-triggered average and spike-triggered covariance) are often used in experimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2003-08, Vol.15 (8), p.1789-1807
Hauptverfasser: Arcas, Blaise Agüera y, Fairhall, Adrienne L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1807
container_issue 8
container_start_page 1789
container_title Neural computation
container_volume 15
creator Arcas, Blaise Agüera y
Fairhall, Adrienne L.
description The computation performed by a neuron can be formulated as a combination of dimensional reduction in stimulus space and the nonlinearity inherent in a spiking output. White noise stimulus and reverse correlation (the spike-triggered average and spike-triggered covariance) are often used in experimental neuroscience to “ask” neurons which dimensions in stimulus space they are sensitive to and to characterize the nonlinearity of the response. In this article, we apply reverse correlation to the simplest model neuron with temporal dynamics—the leaky integrate-andfire model—and find that for even this simple case, standard techniques do not recover the known neural computation. To overcome this, we develop novel reverse-correlation techniques by selectively analyzing only “isolated” spikes and taking explicit account of the extended silences that precede these isolated spikes. We discuss the implications of our methods to the characterization of neural adaptation. Although these methods are developed in the context of the leaky integrate-and-fire model, our findings are relevant for the analysis of spike trains from real neurons.
doi_str_mv 10.1162/08997660360675044
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_18937134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75709486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-206c4bada9756dd818b87fac3011e5514138472560e7838d343ee8e9f926ff33</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-AC8lF71FZ7KfOYmU-gFFDxb0tmw3G0xNk5hNBP31pjagYNHTHOZ5n2FeQo4RzhBFdA4qjqUQQAUIyYGxHTJETiFUSj3tkuF6H3aAHJAD75cAIBD4Phkg44gc6ZCMH59NE0xM650PTHDn2rosgqYMHqrsxV0ckr3U5N4d9XNE5lfT-eQmnN1f304uZ6HlEWvCCIRlC5OYWHKRJArVQsnUWAqIjnNkSBWTERfgpKIqoYw6p1ycxpFIU0pH5HSjrerytXW-0avMW5fnpnBl67XkEmKmxL8gqphK7PQjghvQ1qX3tUt1VWcrU79rBL0uT_8qr8uMe3m7WLnkO9G31QEnPWC8NXlam8Jm_gfXvaO-ROGGW2WNXpZtXXTd_Xl4uoUvnC3fkGdKU4hozHQEEXaKTqA_smqL5xPo5JQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18937134</pqid></control><display><type>article</type><title>What Causes a Neuron to Spike?</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Arcas, Blaise Agüera y ; Fairhall, Adrienne L.</creator><creatorcontrib>Arcas, Blaise Agüera y ; Fairhall, Adrienne L.</creatorcontrib><description>The computation performed by a neuron can be formulated as a combination of dimensional reduction in stimulus space and the nonlinearity inherent in a spiking output. White noise stimulus and reverse correlation (the spike-triggered average and spike-triggered covariance) are often used in experimental neuroscience to “ask” neurons which dimensions in stimulus space they are sensitive to and to characterize the nonlinearity of the response. In this article, we apply reverse correlation to the simplest model neuron with temporal dynamics—the leaky integrate-andfire model—and find that for even this simple case, standard techniques do not recover the known neural computation. To overcome this, we develop novel reverse-correlation techniques by selectively analyzing only “isolated” spikes and taking explicit account of the extended silences that precede these isolated spikes. We discuss the implications of our methods to the characterization of neural adaptation. Although these methods are developed in the context of the leaky integrate-and-fire model, our findings are relevant for the analysis of spike trains from real neurons.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/08997660360675044</identifier><identifier>PMID: 14511513</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Action Potentials - physiology ; Adaptation, Physiological ; Biological and medical sciences ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Lattice theory and statistics (ising, potts, etc.) ; Linear Models ; Models, Neurological ; Neurons - physiology ; Nonlinear Dynamics ; Physics ; Statistical physics, thermodynamics, and nonlinear dynamical systems ; Vertebrates: nervous system and sense organs</subject><ispartof>Neural computation, 2003-08, Vol.15 (8), p.1789-1807</ispartof><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-206c4bada9756dd818b87fac3011e5514138472560e7838d343ee8e9f926ff33</citedby><cites>FETCH-LOGICAL-c524t-206c4bada9756dd818b87fac3011e5514138472560e7838d343ee8e9f926ff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/08997660360675044$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14926844$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14511513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arcas, Blaise Agüera y</creatorcontrib><creatorcontrib>Fairhall, Adrienne L.</creatorcontrib><title>What Causes a Neuron to Spike?</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The computation performed by a neuron can be formulated as a combination of dimensional reduction in stimulus space and the nonlinearity inherent in a spiking output. White noise stimulus and reverse correlation (the spike-triggered average and spike-triggered covariance) are often used in experimental neuroscience to “ask” neurons which dimensions in stimulus space they are sensitive to and to characterize the nonlinearity of the response. In this article, we apply reverse correlation to the simplest model neuron with temporal dynamics—the leaky integrate-andfire model—and find that for even this simple case, standard techniques do not recover the known neural computation. To overcome this, we develop novel reverse-correlation techniques by selectively analyzing only “isolated” spikes and taking explicit account of the extended silences that precede these isolated spikes. We discuss the implications of our methods to the characterization of neural adaptation. Although these methods are developed in the context of the leaky integrate-and-fire model, our findings are relevant for the analysis of spike trains from real neurons.</description><subject>Action Potentials - physiology</subject><subject>Adaptation, Physiological</subject><subject>Biological and medical sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Lattice theory and statistics (ising, potts, etc.)</subject><subject>Linear Models</subject><subject>Models, Neurological</subject><subject>Neurons - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Physics</subject><subject>Statistical physics, thermodynamics, and nonlinear dynamical systems</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK3-AC8lF71FZ7KfOYmU-gFFDxb0tmw3G0xNk5hNBP31pjagYNHTHOZ5n2FeQo4RzhBFdA4qjqUQQAUIyYGxHTJETiFUSj3tkuF6H3aAHJAD75cAIBD4Phkg44gc6ZCMH59NE0xM650PTHDn2rosgqYMHqrsxV0ckr3U5N4d9XNE5lfT-eQmnN1f304uZ6HlEWvCCIRlC5OYWHKRJArVQsnUWAqIjnNkSBWTERfgpKIqoYw6p1ycxpFIU0pH5HSjrerytXW-0avMW5fnpnBl67XkEmKmxL8gqphK7PQjghvQ1qX3tUt1VWcrU79rBL0uT_8qr8uMe3m7WLnkO9G31QEnPWC8NXlam8Jm_gfXvaO-ROGGW2WNXpZtXXTd_Xl4uoUvnC3fkGdKU4hozHQEEXaKTqA_smqL5xPo5JQo</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Arcas, Blaise Agüera y</creator><creator>Fairhall, Adrienne L.</creator><general>MIT Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>What Causes a Neuron to Spike?</title><author>Arcas, Blaise Agüera y ; Fairhall, Adrienne L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-206c4bada9756dd818b87fac3011e5514138472560e7838d343ee8e9f926ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Action Potentials - physiology</topic><topic>Adaptation, Physiological</topic><topic>Biological and medical sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Lattice theory and statistics (ising, potts, etc.)</topic><topic>Linear Models</topic><topic>Models, Neurological</topic><topic>Neurons - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Physics</topic><topic>Statistical physics, thermodynamics, and nonlinear dynamical systems</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcas, Blaise Agüera y</creatorcontrib><creatorcontrib>Fairhall, Adrienne L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcas, Blaise Agüera y</au><au>Fairhall, Adrienne L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Causes a Neuron to Spike?</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>15</volume><issue>8</issue><spage>1789</spage><epage>1807</epage><pages>1789-1807</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>The computation performed by a neuron can be formulated as a combination of dimensional reduction in stimulus space and the nonlinearity inherent in a spiking output. White noise stimulus and reverse correlation (the spike-triggered average and spike-triggered covariance) are often used in experimental neuroscience to “ask” neurons which dimensions in stimulus space they are sensitive to and to characterize the nonlinearity of the response. In this article, we apply reverse correlation to the simplest model neuron with temporal dynamics—the leaky integrate-andfire model—and find that for even this simple case, standard techniques do not recover the known neural computation. To overcome this, we develop novel reverse-correlation techniques by selectively analyzing only “isolated” spikes and taking explicit account of the extended silences that precede these isolated spikes. We discuss the implications of our methods to the characterization of neural adaptation. Although these methods are developed in the context of the leaky integrate-and-fire model, our findings are relevant for the analysis of spike trains from real neurons.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>14511513</pmid><doi>10.1162/08997660360675044</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2003-08, Vol.15 (8), p.1789-1807
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_miscellaneous_18937134
source MEDLINE; MIT Press Journals
subjects Action Potentials - physiology
Adaptation, Physiological
Biological and medical sciences
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Models. Methods
Lattice theory and statistics (ising, potts, etc.)
Linear Models
Models, Neurological
Neurons - physiology
Nonlinear Dynamics
Physics
Statistical physics, thermodynamics, and nonlinear dynamical systems
Vertebrates: nervous system and sense organs
title What Causes a Neuron to Spike?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Causes%20a%20Neuron%20to%20Spike?&rft.jtitle=Neural%20computation&rft.au=Arcas,%20Blaise%20Ag%C3%BCera%20y&rft.date=2003-08-01&rft.volume=15&rft.issue=8&rft.spage=1789&rft.epage=1807&rft.pages=1789-1807&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/08997660360675044&rft_dat=%3Cproquest_pasca%3E75709486%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18937134&rft_id=info:pmid/14511513&rfr_iscdi=true