Valve interstitial cell culture: Production of mature type I collagen and precise detection

Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without asco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2017-08, Vol.80 (8), p.936-942
Hauptverfasser: Liskova, Jana, Hadraba, Daniel, Filova, Elena, Konarik, Miroslav, Pirk, Jan, Jelen, Karel, Bacakova, Lucie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 942
container_issue 8
container_start_page 936
container_title Microscopy research and technique
container_volume 80
creator Liskova, Jana
Hadraba, Daniel
Filova, Elena
Konarik, Miroslav
Pirk, Jan
Jelen, Karel
Bacakova, Lucie
description Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second‐order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid. The VICs markers were identified together with the impact of ascorbic acid deficiency on the quality of collagen fibers. The conventional techniques were positive about deposited collagen; however, no SHG signal was detected.
doi_str_mv 10.1002/jemt.22886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893554019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893554019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-b505831eeb7768c15a12e46f86955e1e5c92e49c8fd8ca59ac905948998b440f3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYxoMobn5c_AMk4EWEzqRt2sSbjKmTiR6mCB5Clr6Vjn7MJFX235uu04MHL-8XPx6e90HohJIRJSS8XELlRmHIebKDhpSINPBXsdvNTASCktcBOrB2SQiljMb7aBDymDEepUP09qLKT8BF7cBYV7hClVhD6UtbutbAFX4yTdZqVzQ1bnJcqe6K3XoFeIp1U5bqHWqs6gyvDOjCAs7AwYY_Qnu5Ki0cb_sher6ZzMd3wezxdjq-ngU6YmkSLBjxXijAIk0TrilTNIQ4yXkiGAMKTAu_C83zjGvFhNLC_xVzIfgijkkeHaLzXndlmo8WrJNVYbsnVA1NayXlImIsJlR49OwPumxaU3t3koowjFLOosRTFz2lTWOtgVyuTFEps5aUyC5y2UUuN5F7-HQr2S4qyH7Rn4w9QHvgqyhh_Y-UvJ88zHvRbxhfi2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1922378536</pqid></control><display><type>article</type><title>Valve interstitial cell culture: Production of mature type I collagen and precise detection</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liskova, Jana ; Hadraba, Daniel ; Filova, Elena ; Konarik, Miroslav ; Pirk, Jan ; Jelen, Karel ; Bacakova, Lucie</creator><creatorcontrib>Liskova, Jana ; Hadraba, Daniel ; Filova, Elena ; Konarik, Miroslav ; Pirk, Jan ; Jelen, Karel ; Bacakova, Lucie</creatorcontrib><description>Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second‐order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid. The VICs markers were identified together with the impact of ascorbic acid deficiency on the quality of collagen fibers. The conventional techniques were positive about deposited collagen; however, no SHG signal was detected.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.22886</identifier><identifier>PMID: 28455837</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acids ; Animals ; Ascorbic acid ; Cell culture ; Cell Culture Techniques ; Cells, Cultured ; Collagen ; Collagen (type I) ; Collagen Type I - analysis ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Correlation coefficient ; Correlation coefficients ; Fibers ; Fluorescence ; fluorescent microscopy ; Gene expression ; Heart diseases ; Heart Valves - chemistry ; Heart Valves - cytology ; Heart Valves - metabolism ; Hydroxyproline ; In vitro methods and tests ; Interstitial cells ; Leydig Cells - chemistry ; Leydig Cells - metabolism ; Male ; Microscopy ; Pigs ; porcine VIC ; Second harmonic generation ; Staining and Labeling ; Swine ; Vitamin C</subject><ispartof>Microscopy research and technique, 2017-08, Vol.80 (8), p.936-942</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-b505831eeb7768c15a12e46f86955e1e5c92e49c8fd8ca59ac905948998b440f3</citedby><cites>FETCH-LOGICAL-c3576-b505831eeb7768c15a12e46f86955e1e5c92e49c8fd8ca59ac905948998b440f3</cites><orcidid>0000-0001-8745-1258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.22886$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.22886$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28455837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liskova, Jana</creatorcontrib><creatorcontrib>Hadraba, Daniel</creatorcontrib><creatorcontrib>Filova, Elena</creatorcontrib><creatorcontrib>Konarik, Miroslav</creatorcontrib><creatorcontrib>Pirk, Jan</creatorcontrib><creatorcontrib>Jelen, Karel</creatorcontrib><creatorcontrib>Bacakova, Lucie</creatorcontrib><title>Valve interstitial cell culture: Production of mature type I collagen and precise detection</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second‐order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid. The VICs markers were identified together with the impact of ascorbic acid deficiency on the quality of collagen fibers. The conventional techniques were positive about deposited collagen; however, no SHG signal was detected.</description><subject>Acids</subject><subject>Animals</subject><subject>Ascorbic acid</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cells, Cultured</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - analysis</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Fibers</subject><subject>Fluorescence</subject><subject>fluorescent microscopy</subject><subject>Gene expression</subject><subject>Heart diseases</subject><subject>Heart Valves - chemistry</subject><subject>Heart Valves - cytology</subject><subject>Heart Valves - metabolism</subject><subject>Hydroxyproline</subject><subject>In vitro methods and tests</subject><subject>Interstitial cells</subject><subject>Leydig Cells - chemistry</subject><subject>Leydig Cells - metabolism</subject><subject>Male</subject><subject>Microscopy</subject><subject>Pigs</subject><subject>porcine VIC</subject><subject>Second harmonic generation</subject><subject>Staining and Labeling</subject><subject>Swine</subject><subject>Vitamin C</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1LwzAYxoMobn5c_AMk4EWEzqRt2sSbjKmTiR6mCB5Clr6Vjn7MJFX235uu04MHL-8XPx6e90HohJIRJSS8XELlRmHIebKDhpSINPBXsdvNTASCktcBOrB2SQiljMb7aBDymDEepUP09qLKT8BF7cBYV7hClVhD6UtbutbAFX4yTdZqVzQ1bnJcqe6K3XoFeIp1U5bqHWqs6gyvDOjCAs7AwYY_Qnu5Ki0cb_sher6ZzMd3wezxdjq-ngU6YmkSLBjxXijAIk0TrilTNIQ4yXkiGAMKTAu_C83zjGvFhNLC_xVzIfgijkkeHaLzXndlmo8WrJNVYbsnVA1NayXlImIsJlR49OwPumxaU3t3koowjFLOosRTFz2lTWOtgVyuTFEps5aUyC5y2UUuN5F7-HQr2S4qyH7Rn4w9QHvgqyhh_Y-UvJ88zHvRbxhfi2E</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Liskova, Jana</creator><creator>Hadraba, Daniel</creator><creator>Filova, Elena</creator><creator>Konarik, Miroslav</creator><creator>Pirk, Jan</creator><creator>Jelen, Karel</creator><creator>Bacakova, Lucie</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8745-1258</orcidid></search><sort><creationdate>201708</creationdate><title>Valve interstitial cell culture: Production of mature type I collagen and precise detection</title><author>Liskova, Jana ; Hadraba, Daniel ; Filova, Elena ; Konarik, Miroslav ; Pirk, Jan ; Jelen, Karel ; Bacakova, Lucie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-b505831eeb7768c15a12e46f86955e1e5c92e49c8fd8ca59ac905948998b440f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Animals</topic><topic>Ascorbic acid</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cells, Cultured</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - analysis</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Fibers</topic><topic>Fluorescence</topic><topic>fluorescent microscopy</topic><topic>Gene expression</topic><topic>Heart diseases</topic><topic>Heart Valves - chemistry</topic><topic>Heart Valves - cytology</topic><topic>Heart Valves - metabolism</topic><topic>Hydroxyproline</topic><topic>In vitro methods and tests</topic><topic>Interstitial cells</topic><topic>Leydig Cells - chemistry</topic><topic>Leydig Cells - metabolism</topic><topic>Male</topic><topic>Microscopy</topic><topic>Pigs</topic><topic>porcine VIC</topic><topic>Second harmonic generation</topic><topic>Staining and Labeling</topic><topic>Swine</topic><topic>Vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liskova, Jana</creatorcontrib><creatorcontrib>Hadraba, Daniel</creatorcontrib><creatorcontrib>Filova, Elena</creatorcontrib><creatorcontrib>Konarik, Miroslav</creatorcontrib><creatorcontrib>Pirk, Jan</creatorcontrib><creatorcontrib>Jelen, Karel</creatorcontrib><creatorcontrib>Bacakova, Lucie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liskova, Jana</au><au>Hadraba, Daniel</au><au>Filova, Elena</au><au>Konarik, Miroslav</au><au>Pirk, Jan</au><au>Jelen, Karel</au><au>Bacakova, Lucie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valve interstitial cell culture: Production of mature type I collagen and precise detection</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2017-08</date><risdate>2017</risdate><volume>80</volume><issue>8</issue><spage>936</spage><epage>942</epage><pages>936-942</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second‐order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid. The VICs markers were identified together with the impact of ascorbic acid deficiency on the quality of collagen fibers. The conventional techniques were positive about deposited collagen; however, no SHG signal was detected.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28455837</pmid><doi>10.1002/jemt.22886</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8745-1258</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2017-08, Vol.80 (8), p.936-942
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_1893554019
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acids
Animals
Ascorbic acid
Cell culture
Cell Culture Techniques
Cells, Cultured
Collagen
Collagen (type I)
Collagen Type I - analysis
Collagen Type I - genetics
Collagen Type I - metabolism
Correlation coefficient
Correlation coefficients
Fibers
Fluorescence
fluorescent microscopy
Gene expression
Heart diseases
Heart Valves - chemistry
Heart Valves - cytology
Heart Valves - metabolism
Hydroxyproline
In vitro methods and tests
Interstitial cells
Leydig Cells - chemistry
Leydig Cells - metabolism
Male
Microscopy
Pigs
porcine VIC
Second harmonic generation
Staining and Labeling
Swine
Vitamin C
title Valve interstitial cell culture: Production of mature type I collagen and precise detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valve%20interstitial%20cell%20culture:%20Production%20of%20mature%20type%20I%20collagen%20and%20precise%20detection&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Liskova,%20Jana&rft.date=2017-08&rft.volume=80&rft.issue=8&rft.spage=936&rft.epage=942&rft.pages=936-942&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.22886&rft_dat=%3Cproquest_cross%3E1893554019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1922378536&rft_id=info:pmid/28455837&rfr_iscdi=true