Valve interstitial cell culture: Production of mature type I collagen and precise detection
Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without asco...
Gespeichert in:
Veröffentlicht in: | Microscopy research and technique 2017-08, Vol.80 (8), p.936-942 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 942 |
---|---|
container_issue | 8 |
container_start_page | 936 |
container_title | Microscopy research and technique |
container_volume | 80 |
creator | Liskova, Jana Hadraba, Daniel Filova, Elena Konarik, Miroslav Pirk, Jan Jelen, Karel Bacakova, Lucie |
description | Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second‐order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid.
The VICs markers were identified together with the impact of ascorbic acid deficiency on the quality of collagen fibers. The conventional techniques were positive about deposited collagen; however, no SHG signal was detected. |
doi_str_mv | 10.1002/jemt.22886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893554019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893554019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-b505831eeb7768c15a12e46f86955e1e5c92e49c8fd8ca59ac905948998b440f3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYxoMobn5c_AMk4EWEzqRt2sSbjKmTiR6mCB5Clr6Vjn7MJFX235uu04MHL-8XPx6e90HohJIRJSS8XELlRmHIebKDhpSINPBXsdvNTASCktcBOrB2SQiljMb7aBDymDEepUP09qLKT8BF7cBYV7hClVhD6UtbutbAFX4yTdZqVzQ1bnJcqe6K3XoFeIp1U5bqHWqs6gyvDOjCAs7AwYY_Qnu5Ki0cb_sher6ZzMd3wezxdjq-ngU6YmkSLBjxXijAIk0TrilTNIQ4yXkiGAMKTAu_C83zjGvFhNLC_xVzIfgijkkeHaLzXndlmo8WrJNVYbsnVA1NayXlImIsJlR49OwPumxaU3t3koowjFLOosRTFz2lTWOtgVyuTFEps5aUyC5y2UUuN5F7-HQr2S4qyH7Rn4w9QHvgqyhh_Y-UvJ88zHvRbxhfi2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1922378536</pqid></control><display><type>article</type><title>Valve interstitial cell culture: Production of mature type I collagen and precise detection</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liskova, Jana ; Hadraba, Daniel ; Filova, Elena ; Konarik, Miroslav ; Pirk, Jan ; Jelen, Karel ; Bacakova, Lucie</creator><creatorcontrib>Liskova, Jana ; Hadraba, Daniel ; Filova, Elena ; Konarik, Miroslav ; Pirk, Jan ; Jelen, Karel ; Bacakova, Lucie</creatorcontrib><description>Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second‐order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid.
The VICs markers were identified together with the impact of ascorbic acid deficiency on the quality of collagen fibers. The conventional techniques were positive about deposited collagen; however, no SHG signal was detected.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.22886</identifier><identifier>PMID: 28455837</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Acids ; Animals ; Ascorbic acid ; Cell culture ; Cell Culture Techniques ; Cells, Cultured ; Collagen ; Collagen (type I) ; Collagen Type I - analysis ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Correlation coefficient ; Correlation coefficients ; Fibers ; Fluorescence ; fluorescent microscopy ; Gene expression ; Heart diseases ; Heart Valves - chemistry ; Heart Valves - cytology ; Heart Valves - metabolism ; Hydroxyproline ; In vitro methods and tests ; Interstitial cells ; Leydig Cells - chemistry ; Leydig Cells - metabolism ; Male ; Microscopy ; Pigs ; porcine VIC ; Second harmonic generation ; Staining and Labeling ; Swine ; Vitamin C</subject><ispartof>Microscopy research and technique, 2017-08, Vol.80 (8), p.936-942</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-b505831eeb7768c15a12e46f86955e1e5c92e49c8fd8ca59ac905948998b440f3</citedby><cites>FETCH-LOGICAL-c3576-b505831eeb7768c15a12e46f86955e1e5c92e49c8fd8ca59ac905948998b440f3</cites><orcidid>0000-0001-8745-1258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.22886$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.22886$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28455837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liskova, Jana</creatorcontrib><creatorcontrib>Hadraba, Daniel</creatorcontrib><creatorcontrib>Filova, Elena</creatorcontrib><creatorcontrib>Konarik, Miroslav</creatorcontrib><creatorcontrib>Pirk, Jan</creatorcontrib><creatorcontrib>Jelen, Karel</creatorcontrib><creatorcontrib>Bacakova, Lucie</creatorcontrib><title>Valve interstitial cell culture: Production of mature type I collagen and precise detection</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second‐order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid.
The VICs markers were identified together with the impact of ascorbic acid deficiency on the quality of collagen fibers. The conventional techniques were positive about deposited collagen; however, no SHG signal was detected.</description><subject>Acids</subject><subject>Animals</subject><subject>Ascorbic acid</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>Cells, Cultured</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen Type I - analysis</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Fibers</subject><subject>Fluorescence</subject><subject>fluorescent microscopy</subject><subject>Gene expression</subject><subject>Heart diseases</subject><subject>Heart Valves - chemistry</subject><subject>Heart Valves - cytology</subject><subject>Heart Valves - metabolism</subject><subject>Hydroxyproline</subject><subject>In vitro methods and tests</subject><subject>Interstitial cells</subject><subject>Leydig Cells - chemistry</subject><subject>Leydig Cells - metabolism</subject><subject>Male</subject><subject>Microscopy</subject><subject>Pigs</subject><subject>porcine VIC</subject><subject>Second harmonic generation</subject><subject>Staining and Labeling</subject><subject>Swine</subject><subject>Vitamin C</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1LwzAYxoMobn5c_AMk4EWEzqRt2sSbjKmTiR6mCB5Clr6Vjn7MJFX235uu04MHL-8XPx6e90HohJIRJSS8XELlRmHIebKDhpSINPBXsdvNTASCktcBOrB2SQiljMb7aBDymDEepUP09qLKT8BF7cBYV7hClVhD6UtbutbAFX4yTdZqVzQ1bnJcqe6K3XoFeIp1U5bqHWqs6gyvDOjCAs7AwYY_Qnu5Ki0cb_sher6ZzMd3wezxdjq-ngU6YmkSLBjxXijAIk0TrilTNIQ4yXkiGAMKTAu_C83zjGvFhNLC_xVzIfgijkkeHaLzXndlmo8WrJNVYbsnVA1NayXlImIsJlR49OwPumxaU3t3koowjFLOosRTFz2lTWOtgVyuTFEps5aUyC5y2UUuN5F7-HQr2S4qyH7Rn4w9QHvgqyhh_Y-UvJ88zHvRbxhfi2E</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Liskova, Jana</creator><creator>Hadraba, Daniel</creator><creator>Filova, Elena</creator><creator>Konarik, Miroslav</creator><creator>Pirk, Jan</creator><creator>Jelen, Karel</creator><creator>Bacakova, Lucie</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8745-1258</orcidid></search><sort><creationdate>201708</creationdate><title>Valve interstitial cell culture: Production of mature type I collagen and precise detection</title><author>Liskova, Jana ; Hadraba, Daniel ; Filova, Elena ; Konarik, Miroslav ; Pirk, Jan ; Jelen, Karel ; Bacakova, Lucie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-b505831eeb7768c15a12e46f86955e1e5c92e49c8fd8ca59ac905948998b440f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acids</topic><topic>Animals</topic><topic>Ascorbic acid</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>Cells, Cultured</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen Type I - analysis</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Fibers</topic><topic>Fluorescence</topic><topic>fluorescent microscopy</topic><topic>Gene expression</topic><topic>Heart diseases</topic><topic>Heart Valves - chemistry</topic><topic>Heart Valves - cytology</topic><topic>Heart Valves - metabolism</topic><topic>Hydroxyproline</topic><topic>In vitro methods and tests</topic><topic>Interstitial cells</topic><topic>Leydig Cells - chemistry</topic><topic>Leydig Cells - metabolism</topic><topic>Male</topic><topic>Microscopy</topic><topic>Pigs</topic><topic>porcine VIC</topic><topic>Second harmonic generation</topic><topic>Staining and Labeling</topic><topic>Swine</topic><topic>Vitamin C</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liskova, Jana</creatorcontrib><creatorcontrib>Hadraba, Daniel</creatorcontrib><creatorcontrib>Filova, Elena</creatorcontrib><creatorcontrib>Konarik, Miroslav</creatorcontrib><creatorcontrib>Pirk, Jan</creatorcontrib><creatorcontrib>Jelen, Karel</creatorcontrib><creatorcontrib>Bacakova, Lucie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liskova, Jana</au><au>Hadraba, Daniel</au><au>Filova, Elena</au><au>Konarik, Miroslav</au><au>Pirk, Jan</au><au>Jelen, Karel</au><au>Bacakova, Lucie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valve interstitial cell culture: Production of mature type I collagen and precise detection</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2017-08</date><risdate>2017</risdate><volume>80</volume><issue>8</issue><spage>936</spage><epage>942</epage><pages>936-942</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second‐order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid.
The VICs markers were identified together with the impact of ascorbic acid deficiency on the quality of collagen fibers. The conventional techniques were positive about deposited collagen; however, no SHG signal was detected.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28455837</pmid><doi>10.1002/jemt.22886</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8745-1258</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-910X |
ispartof | Microscopy research and technique, 2017-08, Vol.80 (8), p.936-942 |
issn | 1059-910X 1097-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893554019 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acids Animals Ascorbic acid Cell culture Cell Culture Techniques Cells, Cultured Collagen Collagen (type I) Collagen Type I - analysis Collagen Type I - genetics Collagen Type I - metabolism Correlation coefficient Correlation coefficients Fibers Fluorescence fluorescent microscopy Gene expression Heart diseases Heart Valves - chemistry Heart Valves - cytology Heart Valves - metabolism Hydroxyproline In vitro methods and tests Interstitial cells Leydig Cells - chemistry Leydig Cells - metabolism Male Microscopy Pigs porcine VIC Second harmonic generation Staining and Labeling Swine Vitamin C |
title | Valve interstitial cell culture: Production of mature type I collagen and precise detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valve%20interstitial%20cell%20culture:%20Production%20of%20mature%20type%20I%20collagen%20and%20precise%20detection&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Liskova,%20Jana&rft.date=2017-08&rft.volume=80&rft.issue=8&rft.spage=936&rft.epage=942&rft.pages=936-942&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.22886&rft_dat=%3Cproquest_cross%3E1893554019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1922378536&rft_id=info:pmid/28455837&rfr_iscdi=true |