Systematic Comparison of False-Discovery-Rate-Controlling Strategies for Proteogenomic Search Using Spike-in Experiments
Proteogenomic searches are useful for novel peptide identification from tandem mass spectra. Usually, separate and multistage approaches are adopted to accurately control the false discovery rate (FDR) for proteogenomic search. Their performance on novel peptide identification has not been thoroughl...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2017-06, Vol.16 (6), p.2231-2239 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2239 |
---|---|
container_issue | 6 |
container_start_page | 2231 |
container_title | Journal of proteome research |
container_volume | 16 |
creator | Li, Honglan Park, Jonghun Kim, Hyunwoo Hwang, Kyu-Baek Paek, Eunok |
description | Proteogenomic searches are useful for novel peptide identification from tandem mass spectra. Usually, separate and multistage approaches are adopted to accurately control the false discovery rate (FDR) for proteogenomic search. Their performance on novel peptide identification has not been thoroughly evaluated, however, mainly due to the difficulty in confirming the existence of identified novel peptides. We simulated a proteogenomic search using a controlled, spike-in proteomic data set. After confirming that the results of the simulated proteogenomic search were similar to those of a real proteogenomic search using a human cell line data set, we evaluated the performance of six FDR control methodsglobal, separate, and multistage FDR estimation, respectively, coupled to a target-decoy search and a mixture model-based methodon novel peptide identification. The multistage approach showed the highest accuracy for FDR estimation. However, global and separate FDR estimation with the mixture model-based method showed higher sensitivities than others at the same true FDR. Furthermore, the mixture model-based method performed equally well when applied without or with a reduced set of decoy sequences. Considering different prior probabilities for novel and known protein identification, we recommend using mixture model-based methods with separate FDR estimation for sensitive and reliable identification of novel peptides from proteogenomic searches. |
doi_str_mv | 10.1021/acs.jproteome.7b00033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893547964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893547964</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-5c7eea912c1b3484eb581de912453c98f5fca12e3e74e24e6d84c287942598f23</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaAs2aT42SRLFFpAqgSidB057qSkJHGwHdT-Pe5zy8rWzL13Zg5CtwQPCabkQSo7XLVGO9A1DKMcY8zYGeoTwUTIEhydH_9xwnroytoVxkREmF2iHo25oDwWfbSebayDWrpSBamuW2lKq5tAF8FEVhbCp9Iq_QtmE35IB2GqG2d0VZXNMpg540vLEmxQaBO873ZZQqNrnzUDadRXMLc7ZVt-Q1g2wXjdgilraJy9RhfFdsLN4R2g-WT8mb6E07fn1_RxGkomiAuFigBkQqgiOeMxh1zEZAG-wAVTSVyIQklCgUHEgXIYLWKuaBwlnArfpWyA7ve5ntVPB9ZltT8Jqko2oDubEY9H8CgZcS8Ve6ky2loDRdb6ZaXZZARnW-iZh56doGcH6N53dxjR5TUsTq4jZS8ge8HOrzvT-Iv_Cf0DzW6Upw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1893547964</pqid></control><display><type>article</type><title>Systematic Comparison of False-Discovery-Rate-Controlling Strategies for Proteogenomic Search Using Spike-in Experiments</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Li, Honglan ; Park, Jonghun ; Kim, Hyunwoo ; Hwang, Kyu-Baek ; Paek, Eunok</creator><creatorcontrib>Li, Honglan ; Park, Jonghun ; Kim, Hyunwoo ; Hwang, Kyu-Baek ; Paek, Eunok</creatorcontrib><description>Proteogenomic searches are useful for novel peptide identification from tandem mass spectra. Usually, separate and multistage approaches are adopted to accurately control the false discovery rate (FDR) for proteogenomic search. Their performance on novel peptide identification has not been thoroughly evaluated, however, mainly due to the difficulty in confirming the existence of identified novel peptides. We simulated a proteogenomic search using a controlled, spike-in proteomic data set. After confirming that the results of the simulated proteogenomic search were similar to those of a real proteogenomic search using a human cell line data set, we evaluated the performance of six FDR control methodsglobal, separate, and multistage FDR estimation, respectively, coupled to a target-decoy search and a mixture model-based methodon novel peptide identification. The multistage approach showed the highest accuracy for FDR estimation. However, global and separate FDR estimation with the mixture model-based method showed higher sensitivities than others at the same true FDR. Furthermore, the mixture model-based method performed equally well when applied without or with a reduced set of decoy sequences. Considering different prior probabilities for novel and known protein identification, we recommend using mixture model-based methods with separate FDR estimation for sensitive and reliable identification of novel peptides from proteogenomic searches.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.7b00033</identifier><identifier>PMID: 28452485</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line ; Computer Simulation ; False Positive Reactions ; Humans ; Methods ; Models, Theoretical ; Peptides - analysis ; Proteogenomics - methods ; Tandem Mass Spectrometry</subject><ispartof>Journal of proteome research, 2017-06, Vol.16 (6), p.2231-2239</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-5c7eea912c1b3484eb581de912453c98f5fca12e3e74e24e6d84c287942598f23</citedby><cites>FETCH-LOGICAL-a351t-5c7eea912c1b3484eb581de912453c98f5fca12e3e74e24e6d84c287942598f23</cites><orcidid>0000-0001-6785-7760 ; 0000-0002-0001-0554 ; 0000-0003-3655-9749 ; 0000-0003-2652-5326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.7b00033$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.7b00033$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28452485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Honglan</creatorcontrib><creatorcontrib>Park, Jonghun</creatorcontrib><creatorcontrib>Kim, Hyunwoo</creatorcontrib><creatorcontrib>Hwang, Kyu-Baek</creatorcontrib><creatorcontrib>Paek, Eunok</creatorcontrib><title>Systematic Comparison of False-Discovery-Rate-Controlling Strategies for Proteogenomic Search Using Spike-in Experiments</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Proteogenomic searches are useful for novel peptide identification from tandem mass spectra. Usually, separate and multistage approaches are adopted to accurately control the false discovery rate (FDR) for proteogenomic search. Their performance on novel peptide identification has not been thoroughly evaluated, however, mainly due to the difficulty in confirming the existence of identified novel peptides. We simulated a proteogenomic search using a controlled, spike-in proteomic data set. After confirming that the results of the simulated proteogenomic search were similar to those of a real proteogenomic search using a human cell line data set, we evaluated the performance of six FDR control methodsglobal, separate, and multistage FDR estimation, respectively, coupled to a target-decoy search and a mixture model-based methodon novel peptide identification. The multistage approach showed the highest accuracy for FDR estimation. However, global and separate FDR estimation with the mixture model-based method showed higher sensitivities than others at the same true FDR. Furthermore, the mixture model-based method performed equally well when applied without or with a reduced set of decoy sequences. Considering different prior probabilities for novel and known protein identification, we recommend using mixture model-based methods with separate FDR estimation for sensitive and reliable identification of novel peptides from proteogenomic searches.</description><subject>Cell Line</subject><subject>Computer Simulation</subject><subject>False Positive Reactions</subject><subject>Humans</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Peptides - analysis</subject><subject>Proteogenomics - methods</subject><subject>Tandem Mass Spectrometry</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwCaAs2aT42SRLFFpAqgSidB057qSkJHGwHdT-Pe5zy8rWzL13Zg5CtwQPCabkQSo7XLVGO9A1DKMcY8zYGeoTwUTIEhydH_9xwnroytoVxkREmF2iHo25oDwWfbSebayDWrpSBamuW2lKq5tAF8FEVhbCp9Iq_QtmE35IB2GqG2d0VZXNMpg540vLEmxQaBO873ZZQqNrnzUDadRXMLc7ZVt-Q1g2wXjdgilraJy9RhfFdsLN4R2g-WT8mb6E07fn1_RxGkomiAuFigBkQqgiOeMxh1zEZAG-wAVTSVyIQklCgUHEgXIYLWKuaBwlnArfpWyA7ve5ntVPB9ZltT8Jqko2oDubEY9H8CgZcS8Ve6ky2loDRdb6ZaXZZARnW-iZh56doGcH6N53dxjR5TUsTq4jZS8ge8HOrzvT-Iv_Cf0DzW6Upw</recordid><startdate>20170602</startdate><enddate>20170602</enddate><creator>Li, Honglan</creator><creator>Park, Jonghun</creator><creator>Kim, Hyunwoo</creator><creator>Hwang, Kyu-Baek</creator><creator>Paek, Eunok</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6785-7760</orcidid><orcidid>https://orcid.org/0000-0002-0001-0554</orcidid><orcidid>https://orcid.org/0000-0003-3655-9749</orcidid><orcidid>https://orcid.org/0000-0003-2652-5326</orcidid></search><sort><creationdate>20170602</creationdate><title>Systematic Comparison of False-Discovery-Rate-Controlling Strategies for Proteogenomic Search Using Spike-in Experiments</title><author>Li, Honglan ; Park, Jonghun ; Kim, Hyunwoo ; Hwang, Kyu-Baek ; Paek, Eunok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-5c7eea912c1b3484eb581de912453c98f5fca12e3e74e24e6d84c287942598f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cell Line</topic><topic>Computer Simulation</topic><topic>False Positive Reactions</topic><topic>Humans</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Peptides - analysis</topic><topic>Proteogenomics - methods</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Honglan</creatorcontrib><creatorcontrib>Park, Jonghun</creatorcontrib><creatorcontrib>Kim, Hyunwoo</creatorcontrib><creatorcontrib>Hwang, Kyu-Baek</creatorcontrib><creatorcontrib>Paek, Eunok</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Honglan</au><au>Park, Jonghun</au><au>Kim, Hyunwoo</au><au>Hwang, Kyu-Baek</au><au>Paek, Eunok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Comparison of False-Discovery-Rate-Controlling Strategies for Proteogenomic Search Using Spike-in Experiments</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2017-06-02</date><risdate>2017</risdate><volume>16</volume><issue>6</issue><spage>2231</spage><epage>2239</epage><pages>2231-2239</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Proteogenomic searches are useful for novel peptide identification from tandem mass spectra. Usually, separate and multistage approaches are adopted to accurately control the false discovery rate (FDR) for proteogenomic search. Their performance on novel peptide identification has not been thoroughly evaluated, however, mainly due to the difficulty in confirming the existence of identified novel peptides. We simulated a proteogenomic search using a controlled, spike-in proteomic data set. After confirming that the results of the simulated proteogenomic search were similar to those of a real proteogenomic search using a human cell line data set, we evaluated the performance of six FDR control methodsglobal, separate, and multistage FDR estimation, respectively, coupled to a target-decoy search and a mixture model-based methodon novel peptide identification. The multistage approach showed the highest accuracy for FDR estimation. However, global and separate FDR estimation with the mixture model-based method showed higher sensitivities than others at the same true FDR. Furthermore, the mixture model-based method performed equally well when applied without or with a reduced set of decoy sequences. Considering different prior probabilities for novel and known protein identification, we recommend using mixture model-based methods with separate FDR estimation for sensitive and reliable identification of novel peptides from proteogenomic searches.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28452485</pmid><doi>10.1021/acs.jproteome.7b00033</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6785-7760</orcidid><orcidid>https://orcid.org/0000-0002-0001-0554</orcidid><orcidid>https://orcid.org/0000-0003-3655-9749</orcidid><orcidid>https://orcid.org/0000-0003-2652-5326</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2017-06, Vol.16 (6), p.2231-2239 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893547964 |
source | American Chemical Society; MEDLINE |
subjects | Cell Line Computer Simulation False Positive Reactions Humans Methods Models, Theoretical Peptides - analysis Proteogenomics - methods Tandem Mass Spectrometry |
title | Systematic Comparison of False-Discovery-Rate-Controlling Strategies for Proteogenomic Search Using Spike-in Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Comparison%20of%20False-Discovery-Rate-Controlling%20Strategies%20for%20Proteogenomic%20Search%20Using%20Spike-in%20Experiments&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Li,%20Honglan&rft.date=2017-06-02&rft.volume=16&rft.issue=6&rft.spage=2231&rft.epage=2239&rft.pages=2231-2239&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.7b00033&rft_dat=%3Cproquest_cross%3E1893547964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1893547964&rft_id=info:pmid/28452485&rfr_iscdi=true |