Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems
This study investigates the interaction of persulfate with soil components and chlorinated volatile organic compounds (CVOCs), using thermally activated persulfate oxidation in three soil types: high sand content; high clay content; and paddy field soil. The effect of soil composition on the availab...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2017-04, Vol.75 (7-8), p.1794-1803 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1803 |
---|---|
container_issue | 7-8 |
container_start_page | 1794 |
container_title | Water science and technology |
container_volume | 75 |
creator | Liu, Jialu Liu, Zhehua Zhang, Fengjun Su, Xiaosi Lyu, Cong |
description | This study investigates the interaction of persulfate with soil components and chlorinated volatile organic compounds (CVOCs), using thermally activated persulfate oxidation in three soil types: high sand content; high clay content; and paddy field soil. The effect of soil composition on the available oxidant demand and CVOC removal rate was evaluated. Results suggest that the treatment efficiency of CVOCs in soil can be ranked as follows: cis-1,2-dichloroethene > trichloroethylene > 1,2-dichloroethane > 1,1,1-trichloroethane. The reactions of soil components with persulfate, shown by the reduction in soil phase natural organics and mineral content, occurred in parallel with persulfate oxidation of CVOCs. Natural oxidant demand from the reaction of soil components with persulfate exerted a large relative contribution to the total oxidant demand. The main influencing factor in oxidant demand in paddy-soil-persulfate systems was natural organics, rather than mineral content as seen with sand and clay soil types exposed to the persulfate system. The competition between CVOCs and soil components for oxidation by persulfate indicates that soil composition exhibits a considerable influence on the available oxidant demand and CVOC removal efficiency. Therefore, soil composition of natural organics and mineral content is a critical factor in estimating the oxidation efficiency of in-situ remediation systems. |
doi_str_mv | 10.2166/wst.2017.052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1893545683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1921162208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-716203f5d28b4010afb2eb42a4229bc7c59788f1dec776c9af20eeb7d9c0da123</originalsourceid><addsrcrecordid>eNpdkU1vFSEUhomxsdfqzrUhcePCucJhZhjcNY1fyY26qGvC8GFpZuAKjPX-nP7Tcp1qGleHHB5e3uRB6AUlW6B9__Ymly0Qyrekg0doQ4XoG8EZPEYbApw1FICdoqc5XxNCOGvJE3QKQ9sB53SDbi-vbJrVNB2w0sX_UsUavLcpL5OrZxx_e6OKjwFHh7-cf9thfTXF5MMfMKYfKniNdZz3cQkmv8PWOavLkc7RT-tN9mtCWONCwcbOKhjsAza-Pki27o588-DrfMjFzvkZOnFqyvb5_TxD3z-8v7z41Oy-fvx8cb5rNKOiNJz2QJjrDAxjSyhRbgQ7tqBaADFqrjvBh8FRYzXnvRbKAbF25EZoYhQFdoZer7n7FH8uNhc5-6ztNKlg45IlHQTr2q4fWEVf_YdexyWF2k5SAbQ2ATJU6s1K6RRzTtbJffKzSgdJiTyqk1WdPKqTVV3FX96HLuNszT_4ryt2BxT0mGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1921162208</pqid></control><display><type>article</type><title>Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Jialu ; Liu, Zhehua ; Zhang, Fengjun ; Su, Xiaosi ; Lyu, Cong</creator><creatorcontrib>Liu, Jialu ; Liu, Zhehua ; Zhang, Fengjun ; Su, Xiaosi ; Lyu, Cong</creatorcontrib><description>This study investigates the interaction of persulfate with soil components and chlorinated volatile organic compounds (CVOCs), using thermally activated persulfate oxidation in three soil types: high sand content; high clay content; and paddy field soil. The effect of soil composition on the available oxidant demand and CVOC removal rate was evaluated. Results suggest that the treatment efficiency of CVOCs in soil can be ranked as follows: cis-1,2-dichloroethene > trichloroethylene > 1,2-dichloroethane > 1,1,1-trichloroethane. The reactions of soil components with persulfate, shown by the reduction in soil phase natural organics and mineral content, occurred in parallel with persulfate oxidation of CVOCs. Natural oxidant demand from the reaction of soil components with persulfate exerted a large relative contribution to the total oxidant demand. The main influencing factor in oxidant demand in paddy-soil-persulfate systems was natural organics, rather than mineral content as seen with sand and clay soil types exposed to the persulfate system. The competition between CVOCs and soil components for oxidation by persulfate indicates that soil composition exhibits a considerable influence on the available oxidant demand and CVOC removal efficiency. Therefore, soil composition of natural organics and mineral content is a critical factor in estimating the oxidation efficiency of in-situ remediation systems.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2017.052</identifier><identifier>PMID: 28452771</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Activated clay ; Chlorination ; Chlorine compounds ; Clay ; Clay minerals ; Clay soils ; Components ; Composition effects ; Demand ; Dichloroethane ; Efficiency ; Ethylene Dichlorides - chemistry ; Halogenation ; Hot Temperature ; Iron ; Minerals - chemistry ; Organic compounds ; Oxidants - chemistry ; Oxidation ; Oxidation-Reduction ; Oxidizing agents ; Remediation ; Removal ; Sand ; Science ; Soil ; Soil - chemistry ; Soil contamination ; Soil investigations ; Soil Pollutants - chemistry ; Soil types ; Soils ; Solvents ; Studies ; Sulfates - chemistry ; Trichloroethane ; Trichloroethanes - chemistry ; Trichloroethylene ; Trichloroethylene - chemistry ; VOCs ; Volatile organic compounds</subject><ispartof>Water science and technology, 2017-04, Vol.75 (7-8), p.1794-1803</ispartof><rights>Copyright IWA Publishing Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-716203f5d28b4010afb2eb42a4229bc7c59788f1dec776c9af20eeb7d9c0da123</citedby><cites>FETCH-LOGICAL-c319t-716203f5d28b4010afb2eb42a4229bc7c59788f1dec776c9af20eeb7d9c0da123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28452771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jialu</creatorcontrib><creatorcontrib>Liu, Zhehua</creatorcontrib><creatorcontrib>Zhang, Fengjun</creatorcontrib><creatorcontrib>Su, Xiaosi</creatorcontrib><creatorcontrib>Lyu, Cong</creatorcontrib><title>Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>This study investigates the interaction of persulfate with soil components and chlorinated volatile organic compounds (CVOCs), using thermally activated persulfate oxidation in three soil types: high sand content; high clay content; and paddy field soil. The effect of soil composition on the available oxidant demand and CVOC removal rate was evaluated. Results suggest that the treatment efficiency of CVOCs in soil can be ranked as follows: cis-1,2-dichloroethene > trichloroethylene > 1,2-dichloroethane > 1,1,1-trichloroethane. The reactions of soil components with persulfate, shown by the reduction in soil phase natural organics and mineral content, occurred in parallel with persulfate oxidation of CVOCs. Natural oxidant demand from the reaction of soil components with persulfate exerted a large relative contribution to the total oxidant demand. The main influencing factor in oxidant demand in paddy-soil-persulfate systems was natural organics, rather than mineral content as seen with sand and clay soil types exposed to the persulfate system. The competition between CVOCs and soil components for oxidation by persulfate indicates that soil composition exhibits a considerable influence on the available oxidant demand and CVOC removal efficiency. Therefore, soil composition of natural organics and mineral content is a critical factor in estimating the oxidation efficiency of in-situ remediation systems.</description><subject>Activated clay</subject><subject>Chlorination</subject><subject>Chlorine compounds</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Clay soils</subject><subject>Components</subject><subject>Composition effects</subject><subject>Demand</subject><subject>Dichloroethane</subject><subject>Efficiency</subject><subject>Ethylene Dichlorides - chemistry</subject><subject>Halogenation</subject><subject>Hot Temperature</subject><subject>Iron</subject><subject>Minerals - chemistry</subject><subject>Organic compounds</subject><subject>Oxidants - chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizing agents</subject><subject>Remediation</subject><subject>Removal</subject><subject>Sand</subject><subject>Science</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil contamination</subject><subject>Soil investigations</subject><subject>Soil Pollutants - chemistry</subject><subject>Soil types</subject><subject>Soils</subject><subject>Solvents</subject><subject>Studies</subject><subject>Sulfates - chemistry</subject><subject>Trichloroethane</subject><subject>Trichloroethanes - chemistry</subject><subject>Trichloroethylene</subject><subject>Trichloroethylene - chemistry</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1vFSEUhomxsdfqzrUhcePCucJhZhjcNY1fyY26qGvC8GFpZuAKjPX-nP7Tcp1qGleHHB5e3uRB6AUlW6B9__Ymly0Qyrekg0doQ4XoG8EZPEYbApw1FICdoqc5XxNCOGvJE3QKQ9sB53SDbi-vbJrVNB2w0sX_UsUavLcpL5OrZxx_e6OKjwFHh7-cf9thfTXF5MMfMKYfKniNdZz3cQkmv8PWOavLkc7RT-tN9mtCWONCwcbOKhjsAza-Pki27o588-DrfMjFzvkZOnFqyvb5_TxD3z-8v7z41Oy-fvx8cb5rNKOiNJz2QJjrDAxjSyhRbgQ7tqBaADFqrjvBh8FRYzXnvRbKAbF25EZoYhQFdoZer7n7FH8uNhc5-6ztNKlg45IlHQTr2q4fWEVf_YdexyWF2k5SAbQ2ATJU6s1K6RRzTtbJffKzSgdJiTyqk1WdPKqTVV3FX96HLuNszT_4ryt2BxT0mGw</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Liu, Jialu</creator><creator>Liu, Zhehua</creator><creator>Zhang, Fengjun</creator><creator>Su, Xiaosi</creator><creator>Lyu, Cong</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems</title><author>Liu, Jialu ; Liu, Zhehua ; Zhang, Fengjun ; Su, Xiaosi ; Lyu, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-716203f5d28b4010afb2eb42a4229bc7c59788f1dec776c9af20eeb7d9c0da123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activated clay</topic><topic>Chlorination</topic><topic>Chlorine compounds</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Clay soils</topic><topic>Components</topic><topic>Composition effects</topic><topic>Demand</topic><topic>Dichloroethane</topic><topic>Efficiency</topic><topic>Ethylene Dichlorides - chemistry</topic><topic>Halogenation</topic><topic>Hot Temperature</topic><topic>Iron</topic><topic>Minerals - chemistry</topic><topic>Organic compounds</topic><topic>Oxidants - chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizing agents</topic><topic>Remediation</topic><topic>Removal</topic><topic>Sand</topic><topic>Science</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil contamination</topic><topic>Soil investigations</topic><topic>Soil Pollutants - chemistry</topic><topic>Soil types</topic><topic>Soils</topic><topic>Solvents</topic><topic>Studies</topic><topic>Sulfates - chemistry</topic><topic>Trichloroethane</topic><topic>Trichloroethanes - chemistry</topic><topic>Trichloroethylene</topic><topic>Trichloroethylene - chemistry</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jialu</creatorcontrib><creatorcontrib>Liu, Zhehua</creatorcontrib><creatorcontrib>Zhang, Fengjun</creatorcontrib><creatorcontrib>Su, Xiaosi</creatorcontrib><creatorcontrib>Lyu, Cong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jialu</au><au>Liu, Zhehua</au><au>Zhang, Fengjun</au><au>Su, Xiaosi</au><au>Lyu, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>75</volume><issue>7-8</issue><spage>1794</spage><epage>1803</epage><pages>1794-1803</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>This study investigates the interaction of persulfate with soil components and chlorinated volatile organic compounds (CVOCs), using thermally activated persulfate oxidation in three soil types: high sand content; high clay content; and paddy field soil. The effect of soil composition on the available oxidant demand and CVOC removal rate was evaluated. Results suggest that the treatment efficiency of CVOCs in soil can be ranked as follows: cis-1,2-dichloroethene > trichloroethylene > 1,2-dichloroethane > 1,1,1-trichloroethane. The reactions of soil components with persulfate, shown by the reduction in soil phase natural organics and mineral content, occurred in parallel with persulfate oxidation of CVOCs. Natural oxidant demand from the reaction of soil components with persulfate exerted a large relative contribution to the total oxidant demand. The main influencing factor in oxidant demand in paddy-soil-persulfate systems was natural organics, rather than mineral content as seen with sand and clay soil types exposed to the persulfate system. The competition between CVOCs and soil components for oxidation by persulfate indicates that soil composition exhibits a considerable influence on the available oxidant demand and CVOC removal efficiency. Therefore, soil composition of natural organics and mineral content is a critical factor in estimating the oxidation efficiency of in-situ remediation systems.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>28452771</pmid><doi>10.2166/wst.2017.052</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2017-04, Vol.75 (7-8), p.1794-1803 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_1893545683 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Activated clay Chlorination Chlorine compounds Clay Clay minerals Clay soils Components Composition effects Demand Dichloroethane Efficiency Ethylene Dichlorides - chemistry Halogenation Hot Temperature Iron Minerals - chemistry Organic compounds Oxidants - chemistry Oxidation Oxidation-Reduction Oxidizing agents Remediation Removal Sand Science Soil Soil - chemistry Soil contamination Soil investigations Soil Pollutants - chemistry Soil types Soils Solvents Studies Sulfates - chemistry Trichloroethane Trichloroethanes - chemistry Trichloroethylene Trichloroethylene - chemistry VOCs Volatile organic compounds |
title | Thermally activated persulfate oxidation of NAPL chlorinated organic compounds: effect of soil composition on oxidant demand in different soil-persulfate systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20activated%20persulfate%20oxidation%20of%20NAPL%20chlorinated%20organic%20compounds:%20effect%20of%20soil%20composition%20on%20oxidant%20demand%20in%20different%20soil-persulfate%20systems&rft.jtitle=Water%20science%20and%20technology&rft.au=Liu,%20Jialu&rft.date=2017-04-01&rft.volume=75&rft.issue=7-8&rft.spage=1794&rft.epage=1803&rft.pages=1794-1803&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2017.052&rft_dat=%3Cproquest_cross%3E1921162208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1921162208&rft_id=info:pmid/28452771&rfr_iscdi=true |