A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection

Cultured neuronal networks, which have the capacity to respond to a wide range of neuroactive compounds, have been suggested to be useful for both screening known analytes and unknown compounds for acute neuropharmacologic effects. Extracellular recording from cultured neuronal networks provides a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2003-10, Vol.18 (11), p.1339-1347
Hauptverfasser: Pancrazio, Joseph J., Gray, Samuel A., Shubin, Yura S., Kulagina, Nadezhda, Cuttino, David S., Shaffer, Kara M., Eisemann, Kevin, Curran, Anthony, Zim, Bret, Gross, Guenter W., O'Shaughnessy, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1347
container_issue 11
container_start_page 1339
container_title Biosensors & bioelectronics
container_volume 18
creator Pancrazio, Joseph J.
Gray, Samuel A.
Shubin, Yura S.
Kulagina, Nadezhda
Cuttino, David S.
Shaffer, Kara M.
Eisemann, Kevin
Curran, Anthony
Zim, Bret
Gross, Guenter W.
O'Shaughnessy, Thomas J.
description Cultured neuronal networks, which have the capacity to respond to a wide range of neuroactive compounds, have been suggested to be useful for both screening known analytes and unknown compounds for acute neuropharmacologic effects. Extracellular recording from cultured neuronal networks provides a means for extracting physiologically relevant activity, i.e. action potential firing, in a noninvasive manner conducive for long-term measurements. Previous work from our laboratory described prototype portable systems capable of high signal-to-noise extracellular recordings from cardiac myocytes. The present work describes a portable system tailored to monitoring neuronal extracellular potentials that readily incorporates standardized microelectrode arrays developed by and in use at the University of North Texas. This system utilizes low noise amplifier and filter boards, a two-stage thermal control system with integrated fluidics and a graphical user interface for data acquisition and control implemented on a personal computer. Wherever possible, off-the-shelf components have been utilized for system design and fabrication. During use with cultured neuronal networks, the system typically exhibits input referred noise levels of only 4–6 μV RMS, such that extracellular potentials exceeding 40 μV can be readily resolved. A flow rate of up to 1 ml/min was achieved while the cell recording chamber temperature was maintained within a range of 36–37 °C. To demonstrate the capability of this system to resolve small extracellular potentials, pharmacological experiments with cultured neuronal networks have been performed using ion channel blockers, tetrodotoxin and tityustoxin. The implications of the experiments for neurotoxin detection are discussed.
doi_str_mv 10.1016/S0956-5663(03)00092-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18932337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566303000927</els_id><sourcerecordid>18932337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-75985af0bfe6659635028079981413b03b82712f40e93f20df5860997dd479d3</originalsourceid><addsrcrecordid>eNqFkE1rFTEUhoNY7LX6E5TZWHQxejKZfK2kFD8KBRd2HzLJGYnOTK5JRr3_vhnvxS6FQMLL854kDyEvKLylQMW7r6C5aLkQ7DWwNwCgu1Y-IjuqJGv7jvHHZPcPOSdPc_5eIUk1PCHntFNaKNbvSLpq9jEVO0zYzMGliBO6kqLHxqZkD01CF5MPy7cmH3LBuQlLDWrHli1061TWhL5ZcE1xsVM9lN8x_cjNGNMxLfFPWBqPpU4OcXlGzkY7ZXx-2i_I3ccPd9ef29svn26ur25b12soreRacTvCMKIQXAvGoVMgtVa0p2wANqhO0m7sATUbO_AjVwK0lt73Unt2QS6PY_cp_lwxFzOH7HCa7IJxzYYqzTrGZAX5Eay_zznhaPYpzDYdDAWzuTZ_XZtNpIG6Ntdm6708XbAOM_qH1kluBV6dAJudncZkFxfyA8dBdEpu3Psjh9XGr4DJZBdwcehDtV-Mj-E_T7kH9h6dNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18932337</pqid></control><display><type>article</type><title>A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Pancrazio, Joseph J. ; Gray, Samuel A. ; Shubin, Yura S. ; Kulagina, Nadezhda ; Cuttino, David S. ; Shaffer, Kara M. ; Eisemann, Kevin ; Curran, Anthony ; Zim, Bret ; Gross, Guenter W. ; O'Shaughnessy, Thomas J.</creator><creatorcontrib>Pancrazio, Joseph J. ; Gray, Samuel A. ; Shubin, Yura S. ; Kulagina, Nadezhda ; Cuttino, David S. ; Shaffer, Kara M. ; Eisemann, Kevin ; Curran, Anthony ; Zim, Bret ; Gross, Guenter W. ; O'Shaughnessy, Thomas J.</creatorcontrib><description>Cultured neuronal networks, which have the capacity to respond to a wide range of neuroactive compounds, have been suggested to be useful for both screening known analytes and unknown compounds for acute neuropharmacologic effects. Extracellular recording from cultured neuronal networks provides a means for extracting physiologically relevant activity, i.e. action potential firing, in a noninvasive manner conducive for long-term measurements. Previous work from our laboratory described prototype portable systems capable of high signal-to-noise extracellular recordings from cardiac myocytes. The present work describes a portable system tailored to monitoring neuronal extracellular potentials that readily incorporates standardized microelectrode arrays developed by and in use at the University of North Texas. This system utilizes low noise amplifier and filter boards, a two-stage thermal control system with integrated fluidics and a graphical user interface for data acquisition and control implemented on a personal computer. Wherever possible, off-the-shelf components have been utilized for system design and fabrication. During use with cultured neuronal networks, the system typically exhibits input referred noise levels of only 4–6 μV RMS, such that extracellular potentials exceeding 40 μV can be readily resolved. A flow rate of up to 1 ml/min was achieved while the cell recording chamber temperature was maintained within a range of 36–37 °C. To demonstrate the capability of this system to resolve small extracellular potentials, pharmacological experiments with cultured neuronal networks have been performed using ion channel blockers, tetrodotoxin and tityustoxin. The implications of the experiments for neurotoxin detection are discussed.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/S0956-5663(03)00092-7</identifier><identifier>PMID: 12896834</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Amplifier ; Animals ; Array ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensor ; Biosensors ; Biotechnology ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; Cells, Cultured ; Dose-Response Relationship, Drug ; Electrophysiology - instrumentation ; Electrophysiology - methods ; Environmental Exposure - analysis ; Equipment Design ; Equipment Failure Analysis ; Extracellular recording ; Feasibility Studies ; Fundamental and applied biological sciences. Psychology ; Information Storage and Retrieval - methods ; ion channel blockers ; Methods. Procedures. Technologies ; Mice ; Mice, Inbred ICR ; Microelectrode array ; Microelectrodes ; Miniaturization ; Nerve Net - drug effects ; Nerve Net - physiology ; Neurotoxins - analysis ; Neurotoxins - poisoning ; Portable ; Primary neuronal cultures ; Reproducibility of Results ; Scorpion Venoms - analysis ; Scorpion Venoms - poisoning ; Sensitivity and Specificity ; signal-to-noise ratio ; tetrodotoxin ; Tetrodotoxin - analysis ; Tetrodotoxin - poisoning ; tityustoxin ; User-Computer Interface ; Various methods and equipments</subject><ispartof>Biosensors &amp; bioelectronics, 2003-10, Vol.18 (11), p.1339-1347</ispartof><rights>2003 Elsevier Science B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-75985af0bfe6659635028079981413b03b82712f40e93f20df5860997dd479d3</citedby><cites>FETCH-LOGICAL-c490t-75985af0bfe6659635028079981413b03b82712f40e93f20df5860997dd479d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0956-5663(03)00092-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15062874$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12896834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pancrazio, Joseph J.</creatorcontrib><creatorcontrib>Gray, Samuel A.</creatorcontrib><creatorcontrib>Shubin, Yura S.</creatorcontrib><creatorcontrib>Kulagina, Nadezhda</creatorcontrib><creatorcontrib>Cuttino, David S.</creatorcontrib><creatorcontrib>Shaffer, Kara M.</creatorcontrib><creatorcontrib>Eisemann, Kevin</creatorcontrib><creatorcontrib>Curran, Anthony</creatorcontrib><creatorcontrib>Zim, Bret</creatorcontrib><creatorcontrib>Gross, Guenter W.</creatorcontrib><creatorcontrib>O'Shaughnessy, Thomas J.</creatorcontrib><title>A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Cultured neuronal networks, which have the capacity to respond to a wide range of neuroactive compounds, have been suggested to be useful for both screening known analytes and unknown compounds for acute neuropharmacologic effects. Extracellular recording from cultured neuronal networks provides a means for extracting physiologically relevant activity, i.e. action potential firing, in a noninvasive manner conducive for long-term measurements. Previous work from our laboratory described prototype portable systems capable of high signal-to-noise extracellular recordings from cardiac myocytes. The present work describes a portable system tailored to monitoring neuronal extracellular potentials that readily incorporates standardized microelectrode arrays developed by and in use at the University of North Texas. This system utilizes low noise amplifier and filter boards, a two-stage thermal control system with integrated fluidics and a graphical user interface for data acquisition and control implemented on a personal computer. Wherever possible, off-the-shelf components have been utilized for system design and fabrication. During use with cultured neuronal networks, the system typically exhibits input referred noise levels of only 4–6 μV RMS, such that extracellular potentials exceeding 40 μV can be readily resolved. A flow rate of up to 1 ml/min was achieved while the cell recording chamber temperature was maintained within a range of 36–37 °C. To demonstrate the capability of this system to resolve small extracellular potentials, pharmacological experiments with cultured neuronal networks have been performed using ion channel blockers, tetrodotoxin and tityustoxin. The implications of the experiments for neurotoxin detection are discussed.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Amplifier</subject><subject>Animals</subject><subject>Array</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensor</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>Cells, Cultured</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrophysiology - instrumentation</subject><subject>Electrophysiology - methods</subject><subject>Environmental Exposure - analysis</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Extracellular recording</subject><subject>Feasibility Studies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Information Storage and Retrieval - methods</subject><subject>ion channel blockers</subject><subject>Methods. Procedures. Technologies</subject><subject>Mice</subject><subject>Mice, Inbred ICR</subject><subject>Microelectrode array</subject><subject>Microelectrodes</subject><subject>Miniaturization</subject><subject>Nerve Net - drug effects</subject><subject>Nerve Net - physiology</subject><subject>Neurotoxins - analysis</subject><subject>Neurotoxins - poisoning</subject><subject>Portable</subject><subject>Primary neuronal cultures</subject><subject>Reproducibility of Results</subject><subject>Scorpion Venoms - analysis</subject><subject>Scorpion Venoms - poisoning</subject><subject>Sensitivity and Specificity</subject><subject>signal-to-noise ratio</subject><subject>tetrodotoxin</subject><subject>Tetrodotoxin - analysis</subject><subject>Tetrodotoxin - poisoning</subject><subject>tityustoxin</subject><subject>User-Computer Interface</subject><subject>Various methods and equipments</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rFTEUhoNY7LX6E5TZWHQxejKZfK2kFD8KBRd2HzLJGYnOTK5JRr3_vhnvxS6FQMLL854kDyEvKLylQMW7r6C5aLkQ7DWwNwCgu1Y-IjuqJGv7jvHHZPcPOSdPc_5eIUk1PCHntFNaKNbvSLpq9jEVO0zYzMGliBO6kqLHxqZkD01CF5MPy7cmH3LBuQlLDWrHli1061TWhL5ZcE1xsVM9lN8x_cjNGNMxLfFPWBqPpU4OcXlGzkY7ZXx-2i_I3ccPd9ef29svn26ur25b12soreRacTvCMKIQXAvGoVMgtVa0p2wANqhO0m7sATUbO_AjVwK0lt73Unt2QS6PY_cp_lwxFzOH7HCa7IJxzYYqzTrGZAX5Eay_zznhaPYpzDYdDAWzuTZ_XZtNpIG6Ntdm6708XbAOM_qH1kluBV6dAJudncZkFxfyA8dBdEpu3Psjh9XGr4DJZBdwcehDtV-Mj-E_T7kH9h6dNg</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Pancrazio, Joseph J.</creator><creator>Gray, Samuel A.</creator><creator>Shubin, Yura S.</creator><creator>Kulagina, Nadezhda</creator><creator>Cuttino, David S.</creator><creator>Shaffer, Kara M.</creator><creator>Eisemann, Kevin</creator><creator>Curran, Anthony</creator><creator>Zim, Bret</creator><creator>Gross, Guenter W.</creator><creator>O'Shaughnessy, Thomas J.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20031001</creationdate><title>A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection</title><author>Pancrazio, Joseph J. ; Gray, Samuel A. ; Shubin, Yura S. ; Kulagina, Nadezhda ; Cuttino, David S. ; Shaffer, Kara M. ; Eisemann, Kevin ; Curran, Anthony ; Zim, Bret ; Gross, Guenter W. ; O'Shaughnessy, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-75985af0bfe6659635028079981413b03b82712f40e93f20df5860997dd479d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Amplifier</topic><topic>Animals</topic><topic>Array</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensor</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>Cells, Cultured</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrophysiology - instrumentation</topic><topic>Electrophysiology - methods</topic><topic>Environmental Exposure - analysis</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Extracellular recording</topic><topic>Feasibility Studies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Information Storage and Retrieval - methods</topic><topic>ion channel blockers</topic><topic>Methods. Procedures. Technologies</topic><topic>Mice</topic><topic>Mice, Inbred ICR</topic><topic>Microelectrode array</topic><topic>Microelectrodes</topic><topic>Miniaturization</topic><topic>Nerve Net - drug effects</topic><topic>Nerve Net - physiology</topic><topic>Neurotoxins - analysis</topic><topic>Neurotoxins - poisoning</topic><topic>Portable</topic><topic>Primary neuronal cultures</topic><topic>Reproducibility of Results</topic><topic>Scorpion Venoms - analysis</topic><topic>Scorpion Venoms - poisoning</topic><topic>Sensitivity and Specificity</topic><topic>signal-to-noise ratio</topic><topic>tetrodotoxin</topic><topic>Tetrodotoxin - analysis</topic><topic>Tetrodotoxin - poisoning</topic><topic>tityustoxin</topic><topic>User-Computer Interface</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pancrazio, Joseph J.</creatorcontrib><creatorcontrib>Gray, Samuel A.</creatorcontrib><creatorcontrib>Shubin, Yura S.</creatorcontrib><creatorcontrib>Kulagina, Nadezhda</creatorcontrib><creatorcontrib>Cuttino, David S.</creatorcontrib><creatorcontrib>Shaffer, Kara M.</creatorcontrib><creatorcontrib>Eisemann, Kevin</creatorcontrib><creatorcontrib>Curran, Anthony</creatorcontrib><creatorcontrib>Zim, Bret</creatorcontrib><creatorcontrib>Gross, Guenter W.</creatorcontrib><creatorcontrib>O'Shaughnessy, Thomas J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pancrazio, Joseph J.</au><au>Gray, Samuel A.</au><au>Shubin, Yura S.</au><au>Kulagina, Nadezhda</au><au>Cuttino, David S.</au><au>Shaffer, Kara M.</au><au>Eisemann, Kevin</au><au>Curran, Anthony</au><au>Zim, Bret</au><au>Gross, Guenter W.</au><au>O'Shaughnessy, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2003-10-01</date><risdate>2003</risdate><volume>18</volume><issue>11</issue><spage>1339</spage><epage>1347</epage><pages>1339-1347</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Cultured neuronal networks, which have the capacity to respond to a wide range of neuroactive compounds, have been suggested to be useful for both screening known analytes and unknown compounds for acute neuropharmacologic effects. Extracellular recording from cultured neuronal networks provides a means for extracting physiologically relevant activity, i.e. action potential firing, in a noninvasive manner conducive for long-term measurements. Previous work from our laboratory described prototype portable systems capable of high signal-to-noise extracellular recordings from cardiac myocytes. The present work describes a portable system tailored to monitoring neuronal extracellular potentials that readily incorporates standardized microelectrode arrays developed by and in use at the University of North Texas. This system utilizes low noise amplifier and filter boards, a two-stage thermal control system with integrated fluidics and a graphical user interface for data acquisition and control implemented on a personal computer. Wherever possible, off-the-shelf components have been utilized for system design and fabrication. During use with cultured neuronal networks, the system typically exhibits input referred noise levels of only 4–6 μV RMS, such that extracellular potentials exceeding 40 μV can be readily resolved. A flow rate of up to 1 ml/min was achieved while the cell recording chamber temperature was maintained within a range of 36–37 °C. To demonstrate the capability of this system to resolve small extracellular potentials, pharmacological experiments with cultured neuronal networks have been performed using ion channel blockers, tetrodotoxin and tityustoxin. The implications of the experiments for neurotoxin detection are discussed.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><pmid>12896834</pmid><doi>10.1016/S0956-5663(03)00092-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2003-10, Vol.18 (11), p.1339-1347
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_18932337
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Action Potentials - drug effects
Action Potentials - physiology
Amplifier
Animals
Array
Biological and medical sciences
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensor
Biosensors
Biotechnology
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
Cells, Cultured
Dose-Response Relationship, Drug
Electrophysiology - instrumentation
Electrophysiology - methods
Environmental Exposure - analysis
Equipment Design
Equipment Failure Analysis
Extracellular recording
Feasibility Studies
Fundamental and applied biological sciences. Psychology
Information Storage and Retrieval - methods
ion channel blockers
Methods. Procedures. Technologies
Mice
Mice, Inbred ICR
Microelectrode array
Microelectrodes
Miniaturization
Nerve Net - drug effects
Nerve Net - physiology
Neurotoxins - analysis
Neurotoxins - poisoning
Portable
Primary neuronal cultures
Reproducibility of Results
Scorpion Venoms - analysis
Scorpion Venoms - poisoning
Sensitivity and Specificity
signal-to-noise ratio
tetrodotoxin
Tetrodotoxin - analysis
Tetrodotoxin - poisoning
tityustoxin
User-Computer Interface
Various methods and equipments
title A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20portable%20microelectrode%20array%20recording%20system%20incorporating%20cultured%20neuronal%20networks%20for%20neurotoxin%20detection&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Pancrazio,%20Joseph%20J.&rft.date=2003-10-01&rft.volume=18&rft.issue=11&rft.spage=1339&rft.epage=1347&rft.pages=1339-1347&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/S0956-5663(03)00092-7&rft_dat=%3Cproquest_cross%3E18932337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18932337&rft_id=info:pmid/12896834&rft_els_id=S0956566303000927&rfr_iscdi=true