Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters

Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-assoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2017-05, Vol.51 (10), p.5703-5712
Hauptverfasser: Parker, Emily A, Rippy, Megan A, Mehring, Andrew S, Winfrey, Brandon K, Ambrose, Richard F, Levin, Lisa A, Grant, Stanley B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5712
container_issue 10
container_start_page 5703
container_title Environmental science & technology
container_volume 51
creator Parker, Emily A
Rippy, Megan A
Mehring, Andrew S
Winfrey, Brandon K
Ambrose, Richard F
Levin, Lisa A
Grant, Stanley B
description Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.
doi_str_mv 10.1021/acs.est.7b00752
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1892725666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924262677</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-aabede0d4056d85079e815bd1a31d7b39829a13f46102d33455219d20da3b8873</originalsourceid><addsrcrecordid>eNp1kd1r2zAUxcVYWdJsz3srgr0UilN9WLL8uISlDRRatg72Zq6ta6piW53kJPS_n0LSFQp9EtL9nXPFOYR85WzOmeCX0MQ5xnFe1IwVSnwgU64Ey5RR_COZMsZlVkr9Z0JOY3xkjAnJzCcyESbPlc7FlPR3Aa1rRrdFeud3GKhv6bJDGOgCLV25bgwwOj_Q-wf04Zm2PtAVNtDR9ZCEMKb7ApoRgwP6E3u_TSM30F9p0O8gvdOF823ywRA_k5MWuohfjueM_F79uF9eZze3V-vl95sMclmOGUCNFpnNmdLWKFaUaLiqLQfJbVHL0ogSuGxznUKwUuZKCV5awSzI2phCzsj5wfcp-L-bFFDVu9hg18GAfhMrbkpRCKW1Tui3N-ij34Qh_a7ipciFFrrYG14eqCb4GAO21VNwPYTnirNq30SVmqj26mMTSXF29N3UPdr__Ev0Cbg4AHvl68537P4BRwaTMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924262677</pqid></control><display><type>article</type><title>Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Parker, Emily A ; Rippy, Megan A ; Mehring, Andrew S ; Winfrey, Brandon K ; Ambrose, Richard F ; Levin, Lisa A ; Grant, Stanley B</creator><creatorcontrib>Parker, Emily A ; Rippy, Megan A ; Mehring, Andrew S ; Winfrey, Brandon K ; Ambrose, Richard F ; Levin, Lisa A ; Grant, Stanley B</creatorcontrib><description>Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b00752</identifier><identifier>PMID: 28445642</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteria ; Biofilters ; Biofiltration ; Closures ; Coastal environments ; Design engineering ; Design improvements ; Ecology ; Enterobacteriaceae ; Environment ; Fecal coliforms ; Feces ; Filters ; Filtration ; Green infrastructure ; Hydrology ; Indicator organisms ; Infiltration rate ; Infrastructure ; Plants (botany) ; Pollutants ; Rain ; Runoff ; Shrubs ; Storm runoff ; Storm sewers ; Stormwater ; Stormwater management ; Urban runoff ; Water Purification ; Water quality ; Water resources</subject><ispartof>Environmental science &amp; technology, 2017-05, Vol.51 (10), p.5703-5712</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society May 16, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-aabede0d4056d85079e815bd1a31d7b39829a13f46102d33455219d20da3b8873</citedby><cites>FETCH-LOGICAL-a439t-aabede0d4056d85079e815bd1a31d7b39829a13f46102d33455219d20da3b8873</cites><orcidid>0000-0001-8653-6487 ; 0000-0001-6221-7211 ; 0000-0002-8299-9908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b00752$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b00752$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28445642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parker, Emily A</creatorcontrib><creatorcontrib>Rippy, Megan A</creatorcontrib><creatorcontrib>Mehring, Andrew S</creatorcontrib><creatorcontrib>Winfrey, Brandon K</creatorcontrib><creatorcontrib>Ambrose, Richard F</creatorcontrib><creatorcontrib>Levin, Lisa A</creatorcontrib><creatorcontrib>Grant, Stanley B</creatorcontrib><title>Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.</description><subject>Bacteria</subject><subject>Biofilters</subject><subject>Biofiltration</subject><subject>Closures</subject><subject>Coastal environments</subject><subject>Design engineering</subject><subject>Design improvements</subject><subject>Ecology</subject><subject>Enterobacteriaceae</subject><subject>Environment</subject><subject>Fecal coliforms</subject><subject>Feces</subject><subject>Filters</subject><subject>Filtration</subject><subject>Green infrastructure</subject><subject>Hydrology</subject><subject>Indicator organisms</subject><subject>Infiltration rate</subject><subject>Infrastructure</subject><subject>Plants (botany)</subject><subject>Pollutants</subject><subject>Rain</subject><subject>Runoff</subject><subject>Shrubs</subject><subject>Storm runoff</subject><subject>Storm sewers</subject><subject>Stormwater</subject><subject>Stormwater management</subject><subject>Urban runoff</subject><subject>Water Purification</subject><subject>Water quality</subject><subject>Water resources</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1r2zAUxcVYWdJsz3srgr0UilN9WLL8uISlDRRatg72Zq6ta6piW53kJPS_n0LSFQp9EtL9nXPFOYR85WzOmeCX0MQ5xnFe1IwVSnwgU64Ey5RR_COZMsZlVkr9Z0JOY3xkjAnJzCcyESbPlc7FlPR3Aa1rRrdFeud3GKhv6bJDGOgCLV25bgwwOj_Q-wf04Zm2PtAVNtDR9ZCEMKb7ApoRgwP6E3u_TSM30F9p0O8gvdOF823ywRA_k5MWuohfjueM_F79uF9eZze3V-vl95sMclmOGUCNFpnNmdLWKFaUaLiqLQfJbVHL0ogSuGxznUKwUuZKCV5awSzI2phCzsj5wfcp-L-bFFDVu9hg18GAfhMrbkpRCKW1Tui3N-ij34Qh_a7ipciFFrrYG14eqCb4GAO21VNwPYTnirNq30SVmqj26mMTSXF29N3UPdr__Ev0Cbg4AHvl68537P4BRwaTMQ</recordid><startdate>20170516</startdate><enddate>20170516</enddate><creator>Parker, Emily A</creator><creator>Rippy, Megan A</creator><creator>Mehring, Andrew S</creator><creator>Winfrey, Brandon K</creator><creator>Ambrose, Richard F</creator><creator>Levin, Lisa A</creator><creator>Grant, Stanley B</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8653-6487</orcidid><orcidid>https://orcid.org/0000-0001-6221-7211</orcidid><orcidid>https://orcid.org/0000-0002-8299-9908</orcidid></search><sort><creationdate>20170516</creationdate><title>Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters</title><author>Parker, Emily A ; Rippy, Megan A ; Mehring, Andrew S ; Winfrey, Brandon K ; Ambrose, Richard F ; Levin, Lisa A ; Grant, Stanley B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-aabede0d4056d85079e815bd1a31d7b39829a13f46102d33455219d20da3b8873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Biofilters</topic><topic>Biofiltration</topic><topic>Closures</topic><topic>Coastal environments</topic><topic>Design engineering</topic><topic>Design improvements</topic><topic>Ecology</topic><topic>Enterobacteriaceae</topic><topic>Environment</topic><topic>Fecal coliforms</topic><topic>Feces</topic><topic>Filters</topic><topic>Filtration</topic><topic>Green infrastructure</topic><topic>Hydrology</topic><topic>Indicator organisms</topic><topic>Infiltration rate</topic><topic>Infrastructure</topic><topic>Plants (botany)</topic><topic>Pollutants</topic><topic>Rain</topic><topic>Runoff</topic><topic>Shrubs</topic><topic>Storm runoff</topic><topic>Storm sewers</topic><topic>Stormwater</topic><topic>Stormwater management</topic><topic>Urban runoff</topic><topic>Water Purification</topic><topic>Water quality</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parker, Emily A</creatorcontrib><creatorcontrib>Rippy, Megan A</creatorcontrib><creatorcontrib>Mehring, Andrew S</creatorcontrib><creatorcontrib>Winfrey, Brandon K</creatorcontrib><creatorcontrib>Ambrose, Richard F</creatorcontrib><creatorcontrib>Levin, Lisa A</creatorcontrib><creatorcontrib>Grant, Stanley B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, Emily A</au><au>Rippy, Megan A</au><au>Mehring, Andrew S</au><au>Winfrey, Brandon K</au><au>Ambrose, Richard F</au><au>Levin, Lisa A</au><au>Grant, Stanley B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-05-16</date><risdate>2017</risdate><volume>51</volume><issue>10</issue><spage>5703</spage><epage>5712</epage><pages>5703-5712</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28445642</pmid><doi>10.1021/acs.est.7b00752</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8653-6487</orcidid><orcidid>https://orcid.org/0000-0001-6221-7211</orcidid><orcidid>https://orcid.org/0000-0002-8299-9908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2017-05, Vol.51 (10), p.5703-5712
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1892725666
source MEDLINE; American Chemical Society Journals
subjects Bacteria
Biofilters
Biofiltration
Closures
Coastal environments
Design engineering
Design improvements
Ecology
Enterobacteriaceae
Environment
Fecal coliforms
Feces
Filters
Filtration
Green infrastructure
Hydrology
Indicator organisms
Infiltration rate
Infrastructure
Plants (botany)
Pollutants
Rain
Runoff
Shrubs
Storm runoff
Storm sewers
Stormwater
Stormwater management
Urban runoff
Water Purification
Water quality
Water resources
title Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Power%20of%20Clean%20Bed%20Filtration%20Theory%20for%20Fecal%20Indicator%20Bacteria%20Removal%20in%20Stormwater%20Biofilters&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Parker,%20Emily%20A&rft.date=2017-05-16&rft.volume=51&rft.issue=10&rft.spage=5703&rft.epage=5712&rft.pages=5703-5712&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b00752&rft_dat=%3Cproquest_cross%3E1924262677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924262677&rft_id=info:pmid/28445642&rfr_iscdi=true