Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters
Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-assoc...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2017-05, Vol.51 (10), p.5703-5712 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5712 |
---|---|
container_issue | 10 |
container_start_page | 5703 |
container_title | Environmental science & technology |
container_volume | 51 |
creator | Parker, Emily A Rippy, Megan A Mehring, Andrew S Winfrey, Brandon K Ambrose, Richard F Levin, Lisa A Grant, Stanley B |
description | Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure. |
doi_str_mv | 10.1021/acs.est.7b00752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1892725666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924262677</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-aabede0d4056d85079e815bd1a31d7b39829a13f46102d33455219d20da3b8873</originalsourceid><addsrcrecordid>eNp1kd1r2zAUxcVYWdJsz3srgr0UilN9WLL8uISlDRRatg72Zq6ta6piW53kJPS_n0LSFQp9EtL9nXPFOYR85WzOmeCX0MQ5xnFe1IwVSnwgU64Ey5RR_COZMsZlVkr9Z0JOY3xkjAnJzCcyESbPlc7FlPR3Aa1rRrdFeud3GKhv6bJDGOgCLV25bgwwOj_Q-wf04Zm2PtAVNtDR9ZCEMKb7ApoRgwP6E3u_TSM30F9p0O8gvdOF823ywRA_k5MWuohfjueM_F79uF9eZze3V-vl95sMclmOGUCNFpnNmdLWKFaUaLiqLQfJbVHL0ogSuGxznUKwUuZKCV5awSzI2phCzsj5wfcp-L-bFFDVu9hg18GAfhMrbkpRCKW1Tui3N-ij34Qh_a7ipciFFrrYG14eqCb4GAO21VNwPYTnirNq30SVmqj26mMTSXF29N3UPdr__Ev0Cbg4AHvl68537P4BRwaTMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924262677</pqid></control><display><type>article</type><title>Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Parker, Emily A ; Rippy, Megan A ; Mehring, Andrew S ; Winfrey, Brandon K ; Ambrose, Richard F ; Levin, Lisa A ; Grant, Stanley B</creator><creatorcontrib>Parker, Emily A ; Rippy, Megan A ; Mehring, Andrew S ; Winfrey, Brandon K ; Ambrose, Richard F ; Levin, Lisa A ; Grant, Stanley B</creatorcontrib><description>Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b00752</identifier><identifier>PMID: 28445642</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteria ; Biofilters ; Biofiltration ; Closures ; Coastal environments ; Design engineering ; Design improvements ; Ecology ; Enterobacteriaceae ; Environment ; Fecal coliforms ; Feces ; Filters ; Filtration ; Green infrastructure ; Hydrology ; Indicator organisms ; Infiltration rate ; Infrastructure ; Plants (botany) ; Pollutants ; Rain ; Runoff ; Shrubs ; Storm runoff ; Storm sewers ; Stormwater ; Stormwater management ; Urban runoff ; Water Purification ; Water quality ; Water resources</subject><ispartof>Environmental science & technology, 2017-05, Vol.51 (10), p.5703-5712</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society May 16, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-aabede0d4056d85079e815bd1a31d7b39829a13f46102d33455219d20da3b8873</citedby><cites>FETCH-LOGICAL-a439t-aabede0d4056d85079e815bd1a31d7b39829a13f46102d33455219d20da3b8873</cites><orcidid>0000-0001-8653-6487 ; 0000-0001-6221-7211 ; 0000-0002-8299-9908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b00752$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b00752$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28445642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parker, Emily A</creatorcontrib><creatorcontrib>Rippy, Megan A</creatorcontrib><creatorcontrib>Mehring, Andrew S</creatorcontrib><creatorcontrib>Winfrey, Brandon K</creatorcontrib><creatorcontrib>Ambrose, Richard F</creatorcontrib><creatorcontrib>Levin, Lisa A</creatorcontrib><creatorcontrib>Grant, Stanley B</creatorcontrib><title>Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.</description><subject>Bacteria</subject><subject>Biofilters</subject><subject>Biofiltration</subject><subject>Closures</subject><subject>Coastal environments</subject><subject>Design engineering</subject><subject>Design improvements</subject><subject>Ecology</subject><subject>Enterobacteriaceae</subject><subject>Environment</subject><subject>Fecal coliforms</subject><subject>Feces</subject><subject>Filters</subject><subject>Filtration</subject><subject>Green infrastructure</subject><subject>Hydrology</subject><subject>Indicator organisms</subject><subject>Infiltration rate</subject><subject>Infrastructure</subject><subject>Plants (botany)</subject><subject>Pollutants</subject><subject>Rain</subject><subject>Runoff</subject><subject>Shrubs</subject><subject>Storm runoff</subject><subject>Storm sewers</subject><subject>Stormwater</subject><subject>Stormwater management</subject><subject>Urban runoff</subject><subject>Water Purification</subject><subject>Water quality</subject><subject>Water resources</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1r2zAUxcVYWdJsz3srgr0UilN9WLL8uISlDRRatg72Zq6ta6piW53kJPS_n0LSFQp9EtL9nXPFOYR85WzOmeCX0MQ5xnFe1IwVSnwgU64Ey5RR_COZMsZlVkr9Z0JOY3xkjAnJzCcyESbPlc7FlPR3Aa1rRrdFeud3GKhv6bJDGOgCLV25bgwwOj_Q-wf04Zm2PtAVNtDR9ZCEMKb7ApoRgwP6E3u_TSM30F9p0O8gvdOF823ywRA_k5MWuohfjueM_F79uF9eZze3V-vl95sMclmOGUCNFpnNmdLWKFaUaLiqLQfJbVHL0ogSuGxznUKwUuZKCV5awSzI2phCzsj5wfcp-L-bFFDVu9hg18GAfhMrbkpRCKW1Tui3N-ij34Qh_a7ipciFFrrYG14eqCb4GAO21VNwPYTnirNq30SVmqj26mMTSXF29N3UPdr__Ev0Cbg4AHvl68537P4BRwaTMQ</recordid><startdate>20170516</startdate><enddate>20170516</enddate><creator>Parker, Emily A</creator><creator>Rippy, Megan A</creator><creator>Mehring, Andrew S</creator><creator>Winfrey, Brandon K</creator><creator>Ambrose, Richard F</creator><creator>Levin, Lisa A</creator><creator>Grant, Stanley B</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8653-6487</orcidid><orcidid>https://orcid.org/0000-0001-6221-7211</orcidid><orcidid>https://orcid.org/0000-0002-8299-9908</orcidid></search><sort><creationdate>20170516</creationdate><title>Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters</title><author>Parker, Emily A ; Rippy, Megan A ; Mehring, Andrew S ; Winfrey, Brandon K ; Ambrose, Richard F ; Levin, Lisa A ; Grant, Stanley B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-aabede0d4056d85079e815bd1a31d7b39829a13f46102d33455219d20da3b8873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Biofilters</topic><topic>Biofiltration</topic><topic>Closures</topic><topic>Coastal environments</topic><topic>Design engineering</topic><topic>Design improvements</topic><topic>Ecology</topic><topic>Enterobacteriaceae</topic><topic>Environment</topic><topic>Fecal coliforms</topic><topic>Feces</topic><topic>Filters</topic><topic>Filtration</topic><topic>Green infrastructure</topic><topic>Hydrology</topic><topic>Indicator organisms</topic><topic>Infiltration rate</topic><topic>Infrastructure</topic><topic>Plants (botany)</topic><topic>Pollutants</topic><topic>Rain</topic><topic>Runoff</topic><topic>Shrubs</topic><topic>Storm runoff</topic><topic>Storm sewers</topic><topic>Stormwater</topic><topic>Stormwater management</topic><topic>Urban runoff</topic><topic>Water Purification</topic><topic>Water quality</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parker, Emily A</creatorcontrib><creatorcontrib>Rippy, Megan A</creatorcontrib><creatorcontrib>Mehring, Andrew S</creatorcontrib><creatorcontrib>Winfrey, Brandon K</creatorcontrib><creatorcontrib>Ambrose, Richard F</creatorcontrib><creatorcontrib>Levin, Lisa A</creatorcontrib><creatorcontrib>Grant, Stanley B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, Emily A</au><au>Rippy, Megan A</au><au>Mehring, Andrew S</au><au>Winfrey, Brandon K</au><au>Ambrose, Richard F</au><au>Levin, Lisa A</au><au>Grant, Stanley B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2017-05-16</date><risdate>2017</risdate><volume>51</volume><issue>10</issue><spage>5703</spage><epage>5712</epage><pages>5703-5712</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Green infrastructure (also referred to as low impact development, or LID) has the potential to transform urban stormwater runoff from an environmental threat to a valuable water resource. In this paper we focus on the removal of fecal indicator bacteria (FIB, a pollutant responsible for runoff-associated inland and coastal beach closures) in stormwater biofilters (a common type of green infrastructure). Drawing on a combination of previously published and new laboratory studies of FIB removal in biofilters, we find that 66% of the variance in FIB removal rates can be explained by clean bed filtration theory (CBFT, 31%), antecedent dry period (14%), study effect (8%), biofilter age (7%), and the presence or absence of shrubs (6%). Our analysis suggests that, with the exception of shrubs, plants affect FIB removal indirectly by changing the infiltration rate, not directly by changing the FIB removal mechanisms or altering filtration rates in ways not already accounted for by CBFT. The analysis presented here represents a significant step forward in our understanding of how physicochemical theories (such as CBFT) can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28445642</pmid><doi>10.1021/acs.est.7b00752</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8653-6487</orcidid><orcidid>https://orcid.org/0000-0001-6221-7211</orcidid><orcidid>https://orcid.org/0000-0002-8299-9908</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2017-05, Vol.51 (10), p.5703-5712 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1892725666 |
source | MEDLINE; American Chemical Society Journals |
subjects | Bacteria Biofilters Biofiltration Closures Coastal environments Design engineering Design improvements Ecology Enterobacteriaceae Environment Fecal coliforms Feces Filters Filtration Green infrastructure Hydrology Indicator organisms Infiltration rate Infrastructure Plants (botany) Pollutants Rain Runoff Shrubs Storm runoff Storm sewers Stormwater Stormwater management Urban runoff Water Purification Water quality Water resources |
title | Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Power%20of%20Clean%20Bed%20Filtration%20Theory%20for%20Fecal%20Indicator%20Bacteria%20Removal%20in%20Stormwater%20Biofilters&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Parker,%20Emily%20A&rft.date=2017-05-16&rft.volume=51&rft.issue=10&rft.spage=5703&rft.epage=5712&rft.pages=5703-5712&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b00752&rft_dat=%3Cproquest_cross%3E1924262677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924262677&rft_id=info:pmid/28445642&rfr_iscdi=true |