Boosted food web productivity through ocean acidification collapses under warming

Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2017-10, Vol.23 (10), p.4177-4184
Hauptverfasser: Goldenberg, Silvan U., Nagelkerken, Ivan, Ferreira, Camilo M., Ullah, Hadayet, Connell, Sean D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4184
container_issue 10
container_start_page 4177
container_title Global change biology
container_volume 23
creator Goldenberg, Silvan U.
Nagelkerken, Ivan
Ferreira, Camilo M.
Ullah, Hadayet
Connell, Sean D.
description Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a 3‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Our findings show how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs and how warming can reverse this effect by acting as a stressor to trophic interactions. We provide a mechanistic understanding of the shifting balance between the propagation of resource enrichment and its consumption across trophic levels, which is a key for predicting future dynamics of stability and collapse in food webs and fisheries production.
doi_str_mv 10.1111/gcb.13699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1892724480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1892724480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-8a2a637ae93b6fc91e685f652a003ca28223d25ab4e0a90221c2b58a527170ec3</originalsourceid><addsrcrecordid>eNp10E1LwzAcBvAgipvTg19AAl70UJfXtjm6oVMYiKDnkKbpltE1M2kd-_ZmdnoQzOWfw4-HhweAS4zucHzjhS7uME2FOALDeHlCWJ4e7_-cJRhhOgBnIawQQpSg9BQMSM5YFuEQvE6cC60pYeVcCbemgBvvyk639tO2O9guvesWS-i0UQ1U2pa2slq11jVQu7pWm2AC7JrSeLhVfm2bxTk4qVQdzMXhjsD748Pb9CmZv8yep_fzRFNORZIrolKaKSNokVZaYJPmvEo5UbGlViQnhJaEq4IZpAQiBGtS8FxxkuEMGU1H4KbPjYU_OhNaubZBm9ipMa4LEueCZISxHEV6_YeuXOeb2E5iQTOGKaYiqtteae9C8KaSG2_Xyu8kRnK_s4w7y--do706JHbF2pS_8mfYCMY92Nra7P5PkrPppI_8AqybhiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937413139</pqid></control><display><type>article</type><title>Boosted food web productivity through ocean acidification collapses under warming</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Ullah, Hadayet ; Connell, Sean D.</creator><creatorcontrib>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Ullah, Hadayet ; Connell, Sean D.</creatorcontrib><description>Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a 3‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Our findings show how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs and how warming can reverse this effect by acting as a stressor to trophic interactions. We provide a mechanistic understanding of the shifting balance between the propagation of resource enrichment and its consumption across trophic levels, which is a key for predicting future dynamics of stability and collapse in food webs and fisheries production.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.13699</identifier><identifier>PMID: 28447365</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acidification ; Algae ; Animals ; Anthropogenic factors ; Carbon dioxide ; Climate ; climate change ; CO2 enrichment ; Community structure ; direct and indirect effect ; Dynamic stability ; Dynamics ; Fish ; Fisheries ; Food Chain ; Food chains ; Food webs ; Global Warming ; Herbivory ; High temperature ; Interactions ; Invertebrates ; Linkages ; mesocosm ; Mesocosms ; Ocean acidification ; Oceans and Seas ; Predators ; Predatory Behavior ; predator–prey ; Prey ; Primary production ; Productivity ; Secondary production ; species interaction ; Stalling ; Stress propagation ; Temperature ; Temperature effects ; Tertiary ; trophic compensation ; Trophic levels</subject><ispartof>Global change biology, 2017-10, Vol.23 (10), p.4177-4184</ispartof><rights>2017 John Wiley &amp; Sons Ltd</rights><rights>2017 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-8a2a637ae93b6fc91e685f652a003ca28223d25ab4e0a90221c2b58a527170ec3</citedby><cites>FETCH-LOGICAL-c3539-8a2a637ae93b6fc91e685f652a003ca28223d25ab4e0a90221c2b58a527170ec3</cites><orcidid>0000-0002-5350-6852 ; 0000-0003-4499-3940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.13699$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.13699$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28447365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldenberg, Silvan U.</creatorcontrib><creatorcontrib>Nagelkerken, Ivan</creatorcontrib><creatorcontrib>Ferreira, Camilo M.</creatorcontrib><creatorcontrib>Ullah, Hadayet</creatorcontrib><creatorcontrib>Connell, Sean D.</creatorcontrib><title>Boosted food web productivity through ocean acidification collapses under warming</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a 3‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Our findings show how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs and how warming can reverse this effect by acting as a stressor to trophic interactions. We provide a mechanistic understanding of the shifting balance between the propagation of resource enrichment and its consumption across trophic levels, which is a key for predicting future dynamics of stability and collapse in food webs and fisheries production.</description><subject>Acidification</subject><subject>Algae</subject><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>climate change</subject><subject>CO2 enrichment</subject><subject>Community structure</subject><subject>direct and indirect effect</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Fish</subject><subject>Fisheries</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Global Warming</subject><subject>Herbivory</subject><subject>High temperature</subject><subject>Interactions</subject><subject>Invertebrates</subject><subject>Linkages</subject><subject>mesocosm</subject><subject>Mesocosms</subject><subject>Ocean acidification</subject><subject>Oceans and Seas</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>predator–prey</subject><subject>Prey</subject><subject>Primary production</subject><subject>Productivity</subject><subject>Secondary production</subject><subject>species interaction</subject><subject>Stalling</subject><subject>Stress propagation</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Tertiary</subject><subject>trophic compensation</subject><subject>Trophic levels</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LwzAcBvAgipvTg19AAl70UJfXtjm6oVMYiKDnkKbpltE1M2kd-_ZmdnoQzOWfw4-HhweAS4zucHzjhS7uME2FOALDeHlCWJ4e7_-cJRhhOgBnIawQQpSg9BQMSM5YFuEQvE6cC60pYeVcCbemgBvvyk639tO2O9guvesWS-i0UQ1U2pa2slq11jVQu7pWm2AC7JrSeLhVfm2bxTk4qVQdzMXhjsD748Pb9CmZv8yep_fzRFNORZIrolKaKSNokVZaYJPmvEo5UbGlViQnhJaEq4IZpAQiBGtS8FxxkuEMGU1H4KbPjYU_OhNaubZBm9ipMa4LEueCZISxHEV6_YeuXOeb2E5iQTOGKaYiqtteae9C8KaSG2_Xyu8kRnK_s4w7y--do706JHbF2pS_8mfYCMY92Nra7P5PkrPppI_8AqybhiA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Goldenberg, Silvan U.</creator><creator>Nagelkerken, Ivan</creator><creator>Ferreira, Camilo M.</creator><creator>Ullah, Hadayet</creator><creator>Connell, Sean D.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5350-6852</orcidid><orcidid>https://orcid.org/0000-0003-4499-3940</orcidid></search><sort><creationdate>201710</creationdate><title>Boosted food web productivity through ocean acidification collapses under warming</title><author>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Ullah, Hadayet ; Connell, Sean D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-8a2a637ae93b6fc91e685f652a003ca28223d25ab4e0a90221c2b58a527170ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidification</topic><topic>Algae</topic><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>climate change</topic><topic>CO2 enrichment</topic><topic>Community structure</topic><topic>direct and indirect effect</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Fish</topic><topic>Fisheries</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Global Warming</topic><topic>Herbivory</topic><topic>High temperature</topic><topic>Interactions</topic><topic>Invertebrates</topic><topic>Linkages</topic><topic>mesocosm</topic><topic>Mesocosms</topic><topic>Ocean acidification</topic><topic>Oceans and Seas</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>predator–prey</topic><topic>Prey</topic><topic>Primary production</topic><topic>Productivity</topic><topic>Secondary production</topic><topic>species interaction</topic><topic>Stalling</topic><topic>Stress propagation</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Tertiary</topic><topic>trophic compensation</topic><topic>Trophic levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldenberg, Silvan U.</creatorcontrib><creatorcontrib>Nagelkerken, Ivan</creatorcontrib><creatorcontrib>Ferreira, Camilo M.</creatorcontrib><creatorcontrib>Ullah, Hadayet</creatorcontrib><creatorcontrib>Connell, Sean D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldenberg, Silvan U.</au><au>Nagelkerken, Ivan</au><au>Ferreira, Camilo M.</au><au>Ullah, Hadayet</au><au>Connell, Sean D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosted food web productivity through ocean acidification collapses under warming</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2017-10</date><risdate>2017</risdate><volume>23</volume><issue>10</issue><spage>4177</spage><epage>4184</epage><pages>4177-4184</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a 3‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Our findings show how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs and how warming can reverse this effect by acting as a stressor to trophic interactions. We provide a mechanistic understanding of the shifting balance between the propagation of resource enrichment and its consumption across trophic levels, which is a key for predicting future dynamics of stability and collapse in food webs and fisheries production.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28447365</pmid><doi>10.1111/gcb.13699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5350-6852</orcidid><orcidid>https://orcid.org/0000-0003-4499-3940</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2017-10, Vol.23 (10), p.4177-4184
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1892724480
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acidification
Algae
Animals
Anthropogenic factors
Carbon dioxide
Climate
climate change
CO2 enrichment
Community structure
direct and indirect effect
Dynamic stability
Dynamics
Fish
Fisheries
Food Chain
Food chains
Food webs
Global Warming
Herbivory
High temperature
Interactions
Invertebrates
Linkages
mesocosm
Mesocosms
Ocean acidification
Oceans and Seas
Predators
Predatory Behavior
predator–prey
Prey
Primary production
Productivity
Secondary production
species interaction
Stalling
Stress propagation
Temperature
Temperature effects
Tertiary
trophic compensation
Trophic levels
title Boosted food web productivity through ocean acidification collapses under warming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosted%20food%20web%20productivity%20through%20ocean%20acidification%20collapses%20under%20warming&rft.jtitle=Global%20change%20biology&rft.au=Goldenberg,%20Silvan%20U.&rft.date=2017-10&rft.volume=23&rft.issue=10&rft.spage=4177&rft.epage=4184&rft.pages=4177-4184&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.13699&rft_dat=%3Cproquest_cross%3E1892724480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937413139&rft_id=info:pmid/28447365&rfr_iscdi=true