Boosted food web productivity through ocean acidification collapses under warming
Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Us...
Gespeichert in:
Veröffentlicht in: | Global change biology 2017-10, Vol.23 (10), p.4177-4184 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4184 |
---|---|
container_issue | 10 |
container_start_page | 4177 |
container_title | Global change biology |
container_volume | 23 |
creator | Goldenberg, Silvan U. Nagelkerken, Ivan Ferreira, Camilo M. Ullah, Hadayet Connell, Sean D. |
description | Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production.
Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a 3‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Our findings show how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs and how warming can reverse this effect by acting as a stressor to trophic interactions. We provide a mechanistic understanding of the shifting balance between the propagation of resource enrichment and its consumption across trophic levels, which is a key for predicting future dynamics of stability and collapse in food webs and fisheries production. |
doi_str_mv | 10.1111/gcb.13699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1892724480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1892724480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-8a2a637ae93b6fc91e685f652a003ca28223d25ab4e0a90221c2b58a527170ec3</originalsourceid><addsrcrecordid>eNp10E1LwzAcBvAgipvTg19AAl70UJfXtjm6oVMYiKDnkKbpltE1M2kd-_ZmdnoQzOWfw4-HhweAS4zucHzjhS7uME2FOALDeHlCWJ4e7_-cJRhhOgBnIawQQpSg9BQMSM5YFuEQvE6cC60pYeVcCbemgBvvyk639tO2O9guvesWS-i0UQ1U2pa2slq11jVQu7pWm2AC7JrSeLhVfm2bxTk4qVQdzMXhjsD748Pb9CmZv8yep_fzRFNORZIrolKaKSNokVZaYJPmvEo5UbGlViQnhJaEq4IZpAQiBGtS8FxxkuEMGU1H4KbPjYU_OhNaubZBm9ipMa4LEueCZISxHEV6_YeuXOeb2E5iQTOGKaYiqtteae9C8KaSG2_Xyu8kRnK_s4w7y--do706JHbF2pS_8mfYCMY92Nra7P5PkrPppI_8AqybhiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937413139</pqid></control><display><type>article</type><title>Boosted food web productivity through ocean acidification collapses under warming</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Ullah, Hadayet ; Connell, Sean D.</creator><creatorcontrib>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Ullah, Hadayet ; Connell, Sean D.</creatorcontrib><description>Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production.
Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a 3‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Our findings show how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs and how warming can reverse this effect by acting as a stressor to trophic interactions. We provide a mechanistic understanding of the shifting balance between the propagation of resource enrichment and its consumption across trophic levels, which is a key for predicting future dynamics of stability and collapse in food webs and fisheries production.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.13699</identifier><identifier>PMID: 28447365</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acidification ; Algae ; Animals ; Anthropogenic factors ; Carbon dioxide ; Climate ; climate change ; CO2 enrichment ; Community structure ; direct and indirect effect ; Dynamic stability ; Dynamics ; Fish ; Fisheries ; Food Chain ; Food chains ; Food webs ; Global Warming ; Herbivory ; High temperature ; Interactions ; Invertebrates ; Linkages ; mesocosm ; Mesocosms ; Ocean acidification ; Oceans and Seas ; Predators ; Predatory Behavior ; predator–prey ; Prey ; Primary production ; Productivity ; Secondary production ; species interaction ; Stalling ; Stress propagation ; Temperature ; Temperature effects ; Tertiary ; trophic compensation ; Trophic levels</subject><ispartof>Global change biology, 2017-10, Vol.23 (10), p.4177-4184</ispartof><rights>2017 John Wiley & Sons Ltd</rights><rights>2017 John Wiley & Sons Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-8a2a637ae93b6fc91e685f652a003ca28223d25ab4e0a90221c2b58a527170ec3</citedby><cites>FETCH-LOGICAL-c3539-8a2a637ae93b6fc91e685f652a003ca28223d25ab4e0a90221c2b58a527170ec3</cites><orcidid>0000-0002-5350-6852 ; 0000-0003-4499-3940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.13699$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.13699$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28447365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldenberg, Silvan U.</creatorcontrib><creatorcontrib>Nagelkerken, Ivan</creatorcontrib><creatorcontrib>Ferreira, Camilo M.</creatorcontrib><creatorcontrib>Ullah, Hadayet</creatorcontrib><creatorcontrib>Connell, Sean D.</creatorcontrib><title>Boosted food web productivity through ocean acidification collapses under warming</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production.
Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a 3‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Our findings show how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs and how warming can reverse this effect by acting as a stressor to trophic interactions. We provide a mechanistic understanding of the shifting balance between the propagation of resource enrichment and its consumption across trophic levels, which is a key for predicting future dynamics of stability and collapse in food webs and fisheries production.</description><subject>Acidification</subject><subject>Algae</subject><subject>Animals</subject><subject>Anthropogenic factors</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>climate change</subject><subject>CO2 enrichment</subject><subject>Community structure</subject><subject>direct and indirect effect</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Fish</subject><subject>Fisheries</subject><subject>Food Chain</subject><subject>Food chains</subject><subject>Food webs</subject><subject>Global Warming</subject><subject>Herbivory</subject><subject>High temperature</subject><subject>Interactions</subject><subject>Invertebrates</subject><subject>Linkages</subject><subject>mesocosm</subject><subject>Mesocosms</subject><subject>Ocean acidification</subject><subject>Oceans and Seas</subject><subject>Predators</subject><subject>Predatory Behavior</subject><subject>predator–prey</subject><subject>Prey</subject><subject>Primary production</subject><subject>Productivity</subject><subject>Secondary production</subject><subject>species interaction</subject><subject>Stalling</subject><subject>Stress propagation</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Tertiary</subject><subject>trophic compensation</subject><subject>Trophic levels</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LwzAcBvAgipvTg19AAl70UJfXtjm6oVMYiKDnkKbpltE1M2kd-_ZmdnoQzOWfw4-HhweAS4zucHzjhS7uME2FOALDeHlCWJ4e7_-cJRhhOgBnIawQQpSg9BQMSM5YFuEQvE6cC60pYeVcCbemgBvvyk639tO2O9guvesWS-i0UQ1U2pa2slq11jVQu7pWm2AC7JrSeLhVfm2bxTk4qVQdzMXhjsD748Pb9CmZv8yep_fzRFNORZIrolKaKSNokVZaYJPmvEo5UbGlViQnhJaEq4IZpAQiBGtS8FxxkuEMGU1H4KbPjYU_OhNaubZBm9ipMa4LEueCZISxHEV6_YeuXOeb2E5iQTOGKaYiqtteae9C8KaSG2_Xyu8kRnK_s4w7y--do706JHbF2pS_8mfYCMY92Nra7P5PkrPppI_8AqybhiA</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Goldenberg, Silvan U.</creator><creator>Nagelkerken, Ivan</creator><creator>Ferreira, Camilo M.</creator><creator>Ullah, Hadayet</creator><creator>Connell, Sean D.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5350-6852</orcidid><orcidid>https://orcid.org/0000-0003-4499-3940</orcidid></search><sort><creationdate>201710</creationdate><title>Boosted food web productivity through ocean acidification collapses under warming</title><author>Goldenberg, Silvan U. ; Nagelkerken, Ivan ; Ferreira, Camilo M. ; Ullah, Hadayet ; Connell, Sean D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-8a2a637ae93b6fc91e685f652a003ca28223d25ab4e0a90221c2b58a527170ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidification</topic><topic>Algae</topic><topic>Animals</topic><topic>Anthropogenic factors</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>climate change</topic><topic>CO2 enrichment</topic><topic>Community structure</topic><topic>direct and indirect effect</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Fish</topic><topic>Fisheries</topic><topic>Food Chain</topic><topic>Food chains</topic><topic>Food webs</topic><topic>Global Warming</topic><topic>Herbivory</topic><topic>High temperature</topic><topic>Interactions</topic><topic>Invertebrates</topic><topic>Linkages</topic><topic>mesocosm</topic><topic>Mesocosms</topic><topic>Ocean acidification</topic><topic>Oceans and Seas</topic><topic>Predators</topic><topic>Predatory Behavior</topic><topic>predator–prey</topic><topic>Prey</topic><topic>Primary production</topic><topic>Productivity</topic><topic>Secondary production</topic><topic>species interaction</topic><topic>Stalling</topic><topic>Stress propagation</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Tertiary</topic><topic>trophic compensation</topic><topic>Trophic levels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldenberg, Silvan U.</creatorcontrib><creatorcontrib>Nagelkerken, Ivan</creatorcontrib><creatorcontrib>Ferreira, Camilo M.</creatorcontrib><creatorcontrib>Ullah, Hadayet</creatorcontrib><creatorcontrib>Connell, Sean D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldenberg, Silvan U.</au><au>Nagelkerken, Ivan</au><au>Ferreira, Camilo M.</au><au>Ullah, Hadayet</au><au>Connell, Sean D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosted food web productivity through ocean acidification collapses under warming</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2017-10</date><risdate>2017</risdate><volume>23</volume><issue>10</issue><spage>4177</spage><epage>4184</epage><pages>4177-4184</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Future climate is forecast to drive bottom‐up (resource driven) and top‐down (consumer driven) change to food web dynamics and community structure. Yet, our predictive understanding of these changes is hampered by an over‐reliance on simplified laboratory systems centred on single trophic levels. Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a three‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Both elevated CO2 and elevated temperature boosted primary production. Under elevated CO2, the enhanced bottom‐up forcing propagated through all trophic levels. Elevated temperature, however, negated the benefits of elevated CO2 by stalling secondary production. This imbalance caused secondary producer populations to decline as elevated temperature drove predators to consume their prey more rapidly in the face of higher metabolic demand. Our findings demonstrate how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs, and how warming can reverse this effect by acting as a stressor to trophic interactions. Understanding the shifting balance between the propagation of resource enrichment and its consumption across trophic levels provides a predictive understanding of future dynamics of stability and collapse in food webs and fisheries production.
Using a large mesocosm experiment, we reveal how future ocean acidification and warming modify trophic linkages across a 3‐level food web: that is, primary (algae), secondary (herbivorous invertebrates) and tertiary (predatory fish) producers. Our findings show how anthropogenic CO2 can function as a resource that boosts productivity throughout food webs and how warming can reverse this effect by acting as a stressor to trophic interactions. We provide a mechanistic understanding of the shifting balance between the propagation of resource enrichment and its consumption across trophic levels, which is a key for predicting future dynamics of stability and collapse in food webs and fisheries production.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28447365</pmid><doi>10.1111/gcb.13699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5350-6852</orcidid><orcidid>https://orcid.org/0000-0003-4499-3940</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2017-10, Vol.23 (10), p.4177-4184 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_1892724480 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Acidification Algae Animals Anthropogenic factors Carbon dioxide Climate climate change CO2 enrichment Community structure direct and indirect effect Dynamic stability Dynamics Fish Fisheries Food Chain Food chains Food webs Global Warming Herbivory High temperature Interactions Invertebrates Linkages mesocosm Mesocosms Ocean acidification Oceans and Seas Predators Predatory Behavior predator–prey Prey Primary production Productivity Secondary production species interaction Stalling Stress propagation Temperature Temperature effects Tertiary trophic compensation Trophic levels |
title | Boosted food web productivity through ocean acidification collapses under warming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosted%20food%20web%20productivity%20through%20ocean%20acidification%20collapses%20under%20warming&rft.jtitle=Global%20change%20biology&rft.au=Goldenberg,%20Silvan%20U.&rft.date=2017-10&rft.volume=23&rft.issue=10&rft.spage=4177&rft.epage=4184&rft.pages=4177-4184&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.13699&rft_dat=%3Cproquest_cross%3E1892724480%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1937413139&rft_id=info:pmid/28447365&rfr_iscdi=true |