Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production

In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 22 factorial design, the lipase production increased 1.55‐fold (124 U/mL) with 4% and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and applied biochemistry 2018-03, Vol.65 (2), p.156-172
Hauptverfasser: García‐Silvera, Edgar Edurman, Martínez‐Morales, Fernando, Bertrand, Brandt, Morales‐Guzmán, Daniel, Rosas‐Galván, Nashbly Sarela, León‐Rodríguez, Renato, Trejo‐Hernández, María R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 2
container_start_page 156
container_title Biotechnology and applied biochemistry
container_volume 65
creator García‐Silvera, Edgar Edurman
Martínez‐Morales, Fernando
Bertrand, Brandt
Morales‐Guzmán, Daniel
Rosas‐Galván, Nashbly Sarela
León‐Rodríguez, Renato
Trejo‐Hernández, María R.
description In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 22 factorial design, the lipase production increased 1.55‐fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X‐100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6–10) and temperatures (5–55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box–Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate.
doi_str_mv 10.1002/bab.1565
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1892335096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2025350210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3495-275f5edeb9a5dc7585ce939cac552c15071a4412eae4e2e6d746bee3490dca833</originalsourceid><addsrcrecordid>eNp1kV1LHTEQhkNR6tEW-gtKwJverCbZ5Gz2Ug_WFgQF2-swm8zWSHazTXYRb_rbjR89guDVMPDMM8O8hHzh7IgzJo476I64WqsPZMVlwyrdSLlDVkxrVUnF6z2yn_MtY0w3Wnwke0JLKdtGrMi_qxTdYmcfRwqjozBNwVt46mNPgc43mIaYZ-gC0uAnyEj7FAd6jSkVDugAyWK2OGbqR-pwxvQHx5n2MQ1LgK2689F5zBjotN35iez2EDJ-fqkH5Pf3s1-bH9XF5fnPzclFZWvZqko0qlfosGtBOdsorSy2dWvBKiUsV6zhICUXCChR4No1ct0hllnmLOi6PiDfnr1l9d8F82wGX04OAUaMSzZct6KuFWvXBT18g97GJY3lOiOYUAUSnL0KbYo5J-zNlHz5xL3hzDxmYkom5jGTgn59ES7dgG4L_g-hANUzcOcD3r8rMqcnp0_CB3vUlz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025350210</pqid></control><display><type>article</type><title>Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production</title><source>Wiley Online Library All Journals</source><creator>García‐Silvera, Edgar Edurman ; Martínez‐Morales, Fernando ; Bertrand, Brandt ; Morales‐Guzmán, Daniel ; Rosas‐Galván, Nashbly Sarela ; León‐Rodríguez, Renato ; Trejo‐Hernández, María R.</creator><creatorcontrib>García‐Silvera, Edgar Edurman ; Martínez‐Morales, Fernando ; Bertrand, Brandt ; Morales‐Guzmán, Daniel ; Rosas‐Galván, Nashbly Sarela ; León‐Rodríguez, Renato ; Trejo‐Hernández, María R.</creatorcontrib><description>In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 22 factorial design, the lipase production increased 1.55‐fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X‐100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6–10) and temperatures (5–55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box–Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate.</description><identifier>ISSN: 0885-4513</identifier><identifier>EISSN: 1470-8744</identifier><identifier>DOI: 10.1002/bab.1565</identifier><identifier>PMID: 28444972</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; biodiesel ; Biodiesel fuels ; Biofuels ; Biotransformation ; Cloth ; Cotton ; detergent ; Enzymes ; Esters ; Experimental design ; Factorial design ; Frying ; Glycine max ; Lipase ; Oil removal ; Oils &amp; fats ; Olive oil ; Organic solvents ; Oxidation ; Oxidizing agents ; Palmitic acid ; pH effects ; Serratia marcescens ; Soybean oil ; Soybeans ; Triglycerides ; Triton</subject><ispartof>Biotechnology and applied biochemistry, 2018-03, Vol.65 (2), p.156-172</ispartof><rights>2017 International Union of Biochemistry and Molecular Biology, Inc.</rights><rights>Copyright © 2018 International Union of Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3495-275f5edeb9a5dc7585ce939cac552c15071a4412eae4e2e6d746bee3490dca833</citedby><cites>FETCH-LOGICAL-c3495-275f5edeb9a5dc7585ce939cac552c15071a4412eae4e2e6d746bee3490dca833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbab.1565$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbab.1565$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28444972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García‐Silvera, Edgar Edurman</creatorcontrib><creatorcontrib>Martínez‐Morales, Fernando</creatorcontrib><creatorcontrib>Bertrand, Brandt</creatorcontrib><creatorcontrib>Morales‐Guzmán, Daniel</creatorcontrib><creatorcontrib>Rosas‐Galván, Nashbly Sarela</creatorcontrib><creatorcontrib>León‐Rodríguez, Renato</creatorcontrib><creatorcontrib>Trejo‐Hernández, María R.</creatorcontrib><title>Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production</title><title>Biotechnology and applied biochemistry</title><addtitle>Biotechnol Appl Biochem</addtitle><description>In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 22 factorial design, the lipase production increased 1.55‐fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X‐100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6–10) and temperatures (5–55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box–Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate.</description><subject>Bacteria</subject><subject>biodiesel</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biotransformation</subject><subject>Cloth</subject><subject>Cotton</subject><subject>detergent</subject><subject>Enzymes</subject><subject>Esters</subject><subject>Experimental design</subject><subject>Factorial design</subject><subject>Frying</subject><subject>Glycine max</subject><subject>Lipase</subject><subject>Oil removal</subject><subject>Oils &amp; fats</subject><subject>Olive oil</subject><subject>Organic solvents</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Palmitic acid</subject><subject>pH effects</subject><subject>Serratia marcescens</subject><subject>Soybean oil</subject><subject>Soybeans</subject><subject>Triglycerides</subject><subject>Triton</subject><issn>0885-4513</issn><issn>1470-8744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kV1LHTEQhkNR6tEW-gtKwJverCbZ5Gz2Ug_WFgQF2-swm8zWSHazTXYRb_rbjR89guDVMPDMM8O8hHzh7IgzJo476I64WqsPZMVlwyrdSLlDVkxrVUnF6z2yn_MtY0w3Wnwke0JLKdtGrMi_qxTdYmcfRwqjozBNwVt46mNPgc43mIaYZ-gC0uAnyEj7FAd6jSkVDugAyWK2OGbqR-pwxvQHx5n2MQ1LgK2689F5zBjotN35iez2EDJ-fqkH5Pf3s1-bH9XF5fnPzclFZWvZqko0qlfosGtBOdsorSy2dWvBKiUsV6zhICUXCChR4No1ct0hllnmLOi6PiDfnr1l9d8F82wGX04OAUaMSzZct6KuFWvXBT18g97GJY3lOiOYUAUSnL0KbYo5J-zNlHz5xL3hzDxmYkom5jGTgn59ES7dgG4L_g-hANUzcOcD3r8rMqcnp0_CB3vUlz4</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>García‐Silvera, Edgar Edurman</creator><creator>Martínez‐Morales, Fernando</creator><creator>Bertrand, Brandt</creator><creator>Morales‐Guzmán, Daniel</creator><creator>Rosas‐Galván, Nashbly Sarela</creator><creator>León‐Rodríguez, Renato</creator><creator>Trejo‐Hernández, María R.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>L7M</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production</title><author>García‐Silvera, Edgar Edurman ; Martínez‐Morales, Fernando ; Bertrand, Brandt ; Morales‐Guzmán, Daniel ; Rosas‐Galván, Nashbly Sarela ; León‐Rodríguez, Renato ; Trejo‐Hernández, María R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3495-275f5edeb9a5dc7585ce939cac552c15071a4412eae4e2e6d746bee3490dca833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacteria</topic><topic>biodiesel</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biotransformation</topic><topic>Cloth</topic><topic>Cotton</topic><topic>detergent</topic><topic>Enzymes</topic><topic>Esters</topic><topic>Experimental design</topic><topic>Factorial design</topic><topic>Frying</topic><topic>Glycine max</topic><topic>Lipase</topic><topic>Oil removal</topic><topic>Oils &amp; fats</topic><topic>Olive oil</topic><topic>Organic solvents</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Palmitic acid</topic><topic>pH effects</topic><topic>Serratia marcescens</topic><topic>Soybean oil</topic><topic>Soybeans</topic><topic>Triglycerides</topic><topic>Triton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García‐Silvera, Edgar Edurman</creatorcontrib><creatorcontrib>Martínez‐Morales, Fernando</creatorcontrib><creatorcontrib>Bertrand, Brandt</creatorcontrib><creatorcontrib>Morales‐Guzmán, Daniel</creatorcontrib><creatorcontrib>Rosas‐Galván, Nashbly Sarela</creatorcontrib><creatorcontrib>León‐Rodríguez, Renato</creatorcontrib><creatorcontrib>Trejo‐Hernández, María R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and applied biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García‐Silvera, Edgar Edurman</au><au>Martínez‐Morales, Fernando</au><au>Bertrand, Brandt</au><au>Morales‐Guzmán, Daniel</au><au>Rosas‐Galván, Nashbly Sarela</au><au>León‐Rodríguez, Renato</au><au>Trejo‐Hernández, María R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production</atitle><jtitle>Biotechnology and applied biochemistry</jtitle><addtitle>Biotechnol Appl Biochem</addtitle><date>2018-03</date><risdate>2018</risdate><volume>65</volume><issue>2</issue><spage>156</spage><epage>172</epage><pages>156-172</pages><issn>0885-4513</issn><eissn>1470-8744</eissn><abstract>In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 22 factorial design, the lipase production increased 1.55‐fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X‐100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6–10) and temperatures (5–55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box–Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28444972</pmid><doi>10.1002/bab.1565</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-4513
ispartof Biotechnology and applied biochemistry, 2018-03, Vol.65 (2), p.156-172
issn 0885-4513
1470-8744
language eng
recordid cdi_proquest_miscellaneous_1892335096
source Wiley Online Library All Journals
subjects Bacteria
biodiesel
Biodiesel fuels
Biofuels
Biotransformation
Cloth
Cotton
detergent
Enzymes
Esters
Experimental design
Factorial design
Frying
Glycine max
Lipase
Oil removal
Oils & fats
Olive oil
Organic solvents
Oxidation
Oxidizing agents
Palmitic acid
pH effects
Serratia marcescens
Soybean oil
Soybeans
Triglycerides
Triton
title Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A27%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20and%20application%20of%20a%20thermostable%20lipase%20from%20Serratia%20marcescens%20in%20detergent%20formulation%20and%20biodiesel%20production&rft.jtitle=Biotechnology%20and%20applied%20biochemistry&rft.au=Garc%C3%ADa%E2%80%90Silvera,%20Edgar%20Edurman&rft.date=2018-03&rft.volume=65&rft.issue=2&rft.spage=156&rft.epage=172&rft.pages=156-172&rft.issn=0885-4513&rft.eissn=1470-8744&rft_id=info:doi/10.1002/bab.1565&rft_dat=%3Cproquest_cross%3E2025350210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025350210&rft_id=info:pmid/28444972&rfr_iscdi=true