Self‐Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line‐Contact Capillary‐Force Assembly

Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2017-06, Vol.13 (23), p.n/a
Hauptverfasser: Lao, Zhao‐Xin, Hu, Yan‐Lei, Pan, Deng, Wang, Ren‐Yan, Zhang, Chen‐Chu, Ni, Jin‐Cheng, Xu, Bing, Li, Jia‐Wen, Wu, Dong, Chu, Jia‐Ru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 13
creator Lao, Zhao‐Xin
Hu, Yan‐Lei
Pan, Deng
Wang, Ren‐Yan
Zhang, Chen‐Chu
Ni, Jin‐Cheng
Xu, Bing
Li, Jia‐Wen
Wu, Dong
Chu, Jia‐Ru
description Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line‐contact capillary‐force assembly. Two microwalls are first printed by femtosecond laser direct‐writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line‐contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As‐prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. A strategy to fabricate microchannels with capillary‐force‐driven self‐assembly has been introduced. Microchannels with controllable nanoholes and almost arbitrary patterns can be prepared without any bonding or multistep processes. As‐prepared microchannels, with wall thicknesses less than 1 µm, widths less than 10 µm, lengths more than 1 mm, are comparable with human capillaries.
doi_str_mv 10.1002/smll.201603957
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891897598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891897598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4217-159ae4bc88bd007a943994ca263e486e4d4e9102722d02ffaf0251513710c6253</originalsourceid><addsrcrecordid>eNqFkUFrFDEUx4MotlavHiXgxcuuL5nMTHKsq1VhqsJWPIZM5k03JZNsk13K3jx59jP6ScyydQUvQuAlj19-vORPyHMGcwbAX-fJ-zkH1kCl6vYBOWUNq2aN5Orhcc_ghDzJ-QagYly0j8kJl0IAiOqU_FiiH399_7lE43Ggb1wMztIuhmt66WyKdmVCQJ_pndus6NXKBfrN-HI2YaBvMbvrYHqP9JMJcRU9Zvol4dqk4up3tHMBi3wRw8bYDV2YtfPepF3pXcRkkZ7njFPvd0_Jo9H4jM_u6xn5evHuavFh1n1-_3Fx3s2s4KydsVoZFL2Vsh8AWqNEpZSwhjcVCtmgGAQqBrzlfAA-jmYEXrOaVS0D2_C6OiOvDt51irdbzBs9uWyxDBUwbrNmUpXV1koW9OU_6E3cplCm00yBlCAE2wvnB6r8Vc4JR71ObipP1Az0PiG9T0gfEyoXXtxrt_2EwxH_E0kB1AG4cx53_9Hp5WXX_ZX_BudTn7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908804415</pqid></control><display><type>article</type><title>Self‐Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line‐Contact Capillary‐Force Assembly</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lao, Zhao‐Xin ; Hu, Yan‐Lei ; Pan, Deng ; Wang, Ren‐Yan ; Zhang, Chen‐Chu ; Ni, Jin‐Cheng ; Xu, Bing ; Li, Jia‐Wen ; Wu, Dong ; Chu, Jia‐Ru</creator><creatorcontrib>Lao, Zhao‐Xin ; Hu, Yan‐Lei ; Pan, Deng ; Wang, Ren‐Yan ; Zhang, Chen‐Chu ; Ni, Jin‐Cheng ; Xu, Bing ; Li, Jia‐Wen ; Wu, Dong ; Chu, Jia‐Ru</creatorcontrib><description>Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line‐contact capillary‐force assembly. Two microwalls are first printed by femtosecond laser direct‐writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line‐contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As‐prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. A strategy to fabricate microchannels with capillary‐force‐driven self‐assembly has been introduced. Microchannels with controllable nanoholes and almost arbitrary patterns can be prepared without any bonding or multistep processes. As‐prepared microchannels, with wall thicknesses less than 1 µm, widths less than 10 µm, lengths more than 1 mm, are comparable with human capillaries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201603957</identifier><identifier>PMID: 28440043</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Bionics ; Bonding ; Capillaries ; Channels ; Collapse ; Direct laser writing ; Evaporation ; femtosecond laser ; Human body ; Human performance ; Lasers ; Microchannels ; Nanostructure ; Nanotechnology ; Printing ; self‐assembly ; Simulation ; Thin walls ; Vessels</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2017-06, Vol.13 (23), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4217-159ae4bc88bd007a943994ca263e486e4d4e9102722d02ffaf0251513710c6253</citedby><cites>FETCH-LOGICAL-c4217-159ae4bc88bd007a943994ca263e486e4d4e9102722d02ffaf0251513710c6253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201603957$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201603957$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28440043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lao, Zhao‐Xin</creatorcontrib><creatorcontrib>Hu, Yan‐Lei</creatorcontrib><creatorcontrib>Pan, Deng</creatorcontrib><creatorcontrib>Wang, Ren‐Yan</creatorcontrib><creatorcontrib>Zhang, Chen‐Chu</creatorcontrib><creatorcontrib>Ni, Jin‐Cheng</creatorcontrib><creatorcontrib>Xu, Bing</creatorcontrib><creatorcontrib>Li, Jia‐Wen</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Chu, Jia‐Ru</creatorcontrib><title>Self‐Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line‐Contact Capillary‐Force Assembly</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line‐contact capillary‐force assembly. Two microwalls are first printed by femtosecond laser direct‐writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line‐contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As‐prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. A strategy to fabricate microchannels with capillary‐force‐driven self‐assembly has been introduced. Microchannels with controllable nanoholes and almost arbitrary patterns can be prepared without any bonding or multistep processes. As‐prepared microchannels, with wall thicknesses less than 1 µm, widths less than 10 µm, lengths more than 1 mm, are comparable with human capillaries.</description><subject>Assembly</subject><subject>Bionics</subject><subject>Bonding</subject><subject>Capillaries</subject><subject>Channels</subject><subject>Collapse</subject><subject>Direct laser writing</subject><subject>Evaporation</subject><subject>femtosecond laser</subject><subject>Human body</subject><subject>Human performance</subject><subject>Lasers</subject><subject>Microchannels</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Printing</subject><subject>self‐assembly</subject><subject>Simulation</subject><subject>Thin walls</subject><subject>Vessels</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUFrFDEUx4MotlavHiXgxcuuL5nMTHKsq1VhqsJWPIZM5k03JZNsk13K3jx59jP6ScyydQUvQuAlj19-vORPyHMGcwbAX-fJ-zkH1kCl6vYBOWUNq2aN5Orhcc_ghDzJ-QagYly0j8kJl0IAiOqU_FiiH399_7lE43Ggb1wMztIuhmt66WyKdmVCQJ_pndus6NXKBfrN-HI2YaBvMbvrYHqP9JMJcRU9Zvol4dqk4up3tHMBi3wRw8bYDV2YtfPepF3pXcRkkZ7njFPvd0_Jo9H4jM_u6xn5evHuavFh1n1-_3Fx3s2s4KydsVoZFL2Vsh8AWqNEpZSwhjcVCtmgGAQqBrzlfAA-jmYEXrOaVS0D2_C6OiOvDt51irdbzBs9uWyxDBUwbrNmUpXV1koW9OU_6E3cplCm00yBlCAE2wvnB6r8Vc4JR71ObipP1Az0PiG9T0gfEyoXXtxrt_2EwxH_E0kB1AG4cx53_9Hp5WXX_ZX_BudTn7w</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Lao, Zhao‐Xin</creator><creator>Hu, Yan‐Lei</creator><creator>Pan, Deng</creator><creator>Wang, Ren‐Yan</creator><creator>Zhang, Chen‐Chu</creator><creator>Ni, Jin‐Cheng</creator><creator>Xu, Bing</creator><creator>Li, Jia‐Wen</creator><creator>Wu, Dong</creator><creator>Chu, Jia‐Ru</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Self‐Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line‐Contact Capillary‐Force Assembly</title><author>Lao, Zhao‐Xin ; Hu, Yan‐Lei ; Pan, Deng ; Wang, Ren‐Yan ; Zhang, Chen‐Chu ; Ni, Jin‐Cheng ; Xu, Bing ; Li, Jia‐Wen ; Wu, Dong ; Chu, Jia‐Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4217-159ae4bc88bd007a943994ca263e486e4d4e9102722d02ffaf0251513710c6253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Assembly</topic><topic>Bionics</topic><topic>Bonding</topic><topic>Capillaries</topic><topic>Channels</topic><topic>Collapse</topic><topic>Direct laser writing</topic><topic>Evaporation</topic><topic>femtosecond laser</topic><topic>Human body</topic><topic>Human performance</topic><topic>Lasers</topic><topic>Microchannels</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Printing</topic><topic>self‐assembly</topic><topic>Simulation</topic><topic>Thin walls</topic><topic>Vessels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lao, Zhao‐Xin</creatorcontrib><creatorcontrib>Hu, Yan‐Lei</creatorcontrib><creatorcontrib>Pan, Deng</creatorcontrib><creatorcontrib>Wang, Ren‐Yan</creatorcontrib><creatorcontrib>Zhang, Chen‐Chu</creatorcontrib><creatorcontrib>Ni, Jin‐Cheng</creatorcontrib><creatorcontrib>Xu, Bing</creatorcontrib><creatorcontrib>Li, Jia‐Wen</creatorcontrib><creatorcontrib>Wu, Dong</creatorcontrib><creatorcontrib>Chu, Jia‐Ru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lao, Zhao‐Xin</au><au>Hu, Yan‐Lei</au><au>Pan, Deng</au><au>Wang, Ren‐Yan</au><au>Zhang, Chen‐Chu</au><au>Ni, Jin‐Cheng</au><au>Xu, Bing</au><au>Li, Jia‐Wen</au><au>Wu, Dong</au><au>Chu, Jia‐Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line‐Contact Capillary‐Force Assembly</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2017-06</date><risdate>2017</risdate><volume>13</volume><issue>23</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line‐contact capillary‐force assembly. Two microwalls are first printed by femtosecond laser direct‐writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line‐contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As‐prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. A strategy to fabricate microchannels with capillary‐force‐driven self‐assembly has been introduced. Microchannels with controllable nanoholes and almost arbitrary patterns can be prepared without any bonding or multistep processes. As‐prepared microchannels, with wall thicknesses less than 1 µm, widths less than 10 µm, lengths more than 1 mm, are comparable with human capillaries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28440043</pmid><doi>10.1002/smll.201603957</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2017-06, Vol.13 (23), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1891897598
source Wiley Online Library Journals Frontfile Complete
subjects Assembly
Bionics
Bonding
Capillaries
Channels
Collapse
Direct laser writing
Evaporation
femtosecond laser
Human body
Human performance
Lasers
Microchannels
Nanostructure
Nanotechnology
Printing
self‐assembly
Simulation
Thin walls
Vessels
title Self‐Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line‐Contact Capillary‐Force Assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Sealed%20Bionic%20Long%20Microchannels%20with%20Thin%20Walls%20and%20Designable%20Nanoholes%20Prepared%20by%20Line%E2%80%90Contact%20Capillary%E2%80%90Force%20Assembly&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Lao,%20Zhao%E2%80%90Xin&rft.date=2017-06&rft.volume=13&rft.issue=23&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201603957&rft_dat=%3Cproquest_cross%3E1891897598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908804415&rft_id=info:pmid/28440043&rfr_iscdi=true