The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121
Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin im...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2017-05, Vol.214 (3), p.1245-1259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1259 |
---|---|
container_issue | 3 |
container_start_page | 1245 |
container_title | The New phytologist |
container_volume | 214 |
creator | An, Chuanfu Wang, Chenggang Mou, Zhonglin |
description | Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood.
We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3′-diaminobenzidine and aniline blue staining.
The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation.
Mutations in Elongator also attenuate the ROS–SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes.
As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis. |
doi_str_mv | 10.1111/nph.14442 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891884400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90004230</jstor_id><sourcerecordid>90004230</sourcerecordid><originalsourceid>FETCH-LOGICAL-j4002-e5fe49d6993b6896fe245955d2c58a7fd71e783bc33020e7d29f56fa877aa1383</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhwAOALHHhkq3_xY6PVVUoUlVWoki9RU4y2XiV2KmdFPbBeD-G7tIDJ3zx-JvfjG3Nl2VvGV0zXGd-6tdMSsmfZSsmlclLJvTzbEUpL3Ml1d1J9iqlHaXUFIq_zE44AlIKvcp-3fZAzqOtXRum5BK5HILf2jlE0oRxGuAnQTHC_eIitKRD3QffhzSjiPxsfQPEbq3zKM3YrLbNDNHZgUx27sMWfCJ31mM4Bm8TadwcHUlLnab18WB9SzYJlvaIpH10-Agg08OaTL1NEAbXhMGSm803wTh7nb3o7JDgzXE_zb5_ury9uMqvv37-cnF-ne8k_j2HogNpWmWMqFVpVAdcFqYoWt4UpdVdqxnoUtSNEJRT0C03XaE6W2ptLROlOM0-HvpOMdwvkOZqdKmBYbAewpIqVhpWlhIv-w9UcSM0VRrRD_-gu7BEjx-pOMVxaUQZUu-P1FKP0FZTdKON--rv7BA4OwA_3AD7pzyj1R9TVGiK6tEU1c3m6jHAineHil3CAT9VGDQGZqn4DQ9xtNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064678621</pqid></control><display><type>article</type><title>The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>An, Chuanfu ; Wang, Chenggang ; Mou, Zhonglin</creator><creatorcontrib>An, Chuanfu ; Wang, Chenggang ; Mou, Zhonglin</creatorcontrib><description>Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood.
We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3′-diaminobenzidine and aniline blue staining.
The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation.
Mutations in Elongator also attenuate the ROS–SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes.
As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14442</identifier><identifier>PMID: 28134437</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Accumulation ; Acetylation ; Aniline ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Bacteria ; Biosynthesis ; Chromatin ; Chromatin - metabolism ; Disease Resistance - genetics ; DNA ; Durability ; Elongation ; Elongator ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Green Fluorescent Proteins - metabolism ; Histone acetyltransferase ; Histone H3 ; Histones ; Histones - metabolism ; Homology ; Immunoprecipitation ; Molecular chains ; Mutants ; Mutation ; nonhost resistance ; Nucleotide sequence ; Pathogen-Associated Molecular Pattern Molecules - metabolism ; PCR ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; plant immunity ; Pseudomonas ; Pseudomonas syringae ; Pseudomonas syringae - physiology ; Reactive oxygen species ; reactive oxygen species (ROS) ; Reactive Oxygen Species - metabolism ; Respiratory burst oxidase ; Salicylic acid ; salicylic acid (SA) ; Salicylic Acid - metabolism ; Xanthomonas ; Xanthomonas - physiology ; Xanthomonas citri</subject><ispartof>The New phytologist, 2017-05, Vol.214 (3), p.1245-1259</ispartof><rights>2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90004230$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90004230$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28134437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Chuanfu</creatorcontrib><creatorcontrib>Wang, Chenggang</creatorcontrib><creatorcontrib>Mou, Zhonglin</creatorcontrib><title>The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood.
We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3′-diaminobenzidine and aniline blue staining.
The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation.
Mutations in Elongator also attenuate the ROS–SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes.
As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.</description><subject>Accumulation</subject><subject>Acetylation</subject><subject>Aniline</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Bacteria</subject><subject>Biosynthesis</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Disease Resistance - genetics</subject><subject>DNA</subject><subject>Durability</subject><subject>Elongation</subject><subject>Elongator</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Histone acetyltransferase</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Homology</subject><subject>Immunoprecipitation</subject><subject>Molecular chains</subject><subject>Mutants</subject><subject>Mutation</subject><subject>nonhost resistance</subject><subject>Nucleotide sequence</subject><subject>Pathogen-Associated Molecular Pattern Molecules - metabolism</subject><subject>PCR</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>plant immunity</subject><subject>Pseudomonas</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - physiology</subject><subject>Reactive oxygen species</subject><subject>reactive oxygen species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory burst oxidase</subject><subject>Salicylic acid</subject><subject>salicylic acid (SA)</subject><subject>Salicylic Acid - metabolism</subject><subject>Xanthomonas</subject><subject>Xanthomonas - physiology</subject><subject>Xanthomonas citri</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxiMEokvhwAOALHHhkq3_xY6PVVUoUlVWoki9RU4y2XiV2KmdFPbBeD-G7tIDJ3zx-JvfjG3Nl2VvGV0zXGd-6tdMSsmfZSsmlclLJvTzbEUpL3Ml1d1J9iqlHaXUFIq_zE44AlIKvcp-3fZAzqOtXRum5BK5HILf2jlE0oRxGuAnQTHC_eIitKRD3QffhzSjiPxsfQPEbq3zKM3YrLbNDNHZgUx27sMWfCJ31mM4Bm8TadwcHUlLnab18WB9SzYJlvaIpH10-Agg08OaTL1NEAbXhMGSm803wTh7nb3o7JDgzXE_zb5_ury9uMqvv37-cnF-ne8k_j2HogNpWmWMqFVpVAdcFqYoWt4UpdVdqxnoUtSNEJRT0C03XaE6W2ptLROlOM0-HvpOMdwvkOZqdKmBYbAewpIqVhpWlhIv-w9UcSM0VRrRD_-gu7BEjx-pOMVxaUQZUu-P1FKP0FZTdKON--rv7BA4OwA_3AD7pzyj1R9TVGiK6tEU1c3m6jHAineHil3CAT9VGDQGZqn4DQ9xtNg</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>An, Chuanfu</creator><creator>Wang, Chenggang</creator><creator>Mou, Zhonglin</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope></search><sort><creationdate>201705</creationdate><title>The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121</title><author>An, Chuanfu ; Wang, Chenggang ; Mou, Zhonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j4002-e5fe49d6993b6896fe245955d2c58a7fd71e783bc33020e7d29f56fa877aa1383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulation</topic><topic>Acetylation</topic><topic>Aniline</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Bacteria</topic><topic>Biosynthesis</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Disease Resistance - genetics</topic><topic>DNA</topic><topic>Durability</topic><topic>Elongation</topic><topic>Elongator</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Histone acetyltransferase</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Homology</topic><topic>Immunoprecipitation</topic><topic>Molecular chains</topic><topic>Mutants</topic><topic>Mutation</topic><topic>nonhost resistance</topic><topic>Nucleotide sequence</topic><topic>Pathogen-Associated Molecular Pattern Molecules - metabolism</topic><topic>PCR</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>plant immunity</topic><topic>Pseudomonas</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - physiology</topic><topic>Reactive oxygen species</topic><topic>reactive oxygen species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory burst oxidase</topic><topic>Salicylic acid</topic><topic>salicylic acid (SA)</topic><topic>Salicylic Acid - metabolism</topic><topic>Xanthomonas</topic><topic>Xanthomonas - physiology</topic><topic>Xanthomonas citri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Chuanfu</creatorcontrib><creatorcontrib>Wang, Chenggang</creatorcontrib><creatorcontrib>Mou, Zhonglin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Chuanfu</au><au>Wang, Chenggang</au><au>Mou, Zhonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-05</date><risdate>2017</risdate><volume>214</volume><issue>3</issue><spage>1245</spage><epage>1259</epage><pages>1245-1259</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood.
We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3′-diaminobenzidine and aniline blue staining.
The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation.
Mutations in Elongator also attenuate the ROS–SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes.
As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28134437</pmid><doi>10.1111/nph.14442</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2017-05, Vol.214 (3), p.1245-1259 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1891884400 |
source | Jstor Complete Legacy; Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accumulation Acetylation Aniline Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - microbiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Bacteria Biosynthesis Chromatin Chromatin - metabolism Disease Resistance - genetics DNA Durability Elongation Elongator Gene expression Gene Expression Regulation, Plant Genes Genes, Plant Green Fluorescent Proteins - metabolism Histone acetyltransferase Histone H3 Histones Histones - metabolism Homology Immunoprecipitation Molecular chains Mutants Mutation nonhost resistance Nucleotide sequence Pathogen-Associated Molecular Pattern Molecules - metabolism PCR Plant Diseases - genetics Plant Diseases - immunology Plant Diseases - microbiology plant immunity Pseudomonas Pseudomonas syringae Pseudomonas syringae - physiology Reactive oxygen species reactive oxygen species (ROS) Reactive Oxygen Species - metabolism Respiratory burst oxidase Salicylic acid salicylic acid (SA) Salicylic Acid - metabolism Xanthomonas Xanthomonas - physiology Xanthomonas citri |
title | The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Arabidopsis%20Elongator%20complex%20is%20required%20for%20nonhost%20resistance%20against%20the%20bacterial%20pathogens%20Xanthomonas%20citri%20subsp.%20citri%20and%20Pseudomonas%20syringae%20pv.%20phaseolicola%20NPS3121&rft.jtitle=The%20New%20phytologist&rft.au=An,%20Chuanfu&rft.date=2017-05&rft.volume=214&rft.issue=3&rft.spage=1245&rft.epage=1259&rft.pages=1245-1259&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14442&rft_dat=%3Cjstor_proqu%3E90004230%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064678621&rft_id=info:pmid/28134437&rft_jstor_id=90004230&rfr_iscdi=true |