The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121

Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2017-05, Vol.214 (3), p.1245-1259
Hauptverfasser: An, Chuanfu, Wang, Chenggang, Mou, Zhonglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1259
container_issue 3
container_start_page 1245
container_title The New phytologist
container_volume 214
creator An, Chuanfu
Wang, Chenggang
Mou, Zhonglin
description Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3′-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS–SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.
doi_str_mv 10.1111/nph.14442
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891884400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90004230</jstor_id><sourcerecordid>90004230</sourcerecordid><originalsourceid>FETCH-LOGICAL-j4002-e5fe49d6993b6896fe245955d2c58a7fd71e783bc33020e7d29f56fa877aa1383</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhwAOALHHhkq3_xY6PVVUoUlVWoki9RU4y2XiV2KmdFPbBeD-G7tIDJ3zx-JvfjG3Nl2VvGV0zXGd-6tdMSsmfZSsmlclLJvTzbEUpL3Ml1d1J9iqlHaXUFIq_zE44AlIKvcp-3fZAzqOtXRum5BK5HILf2jlE0oRxGuAnQTHC_eIitKRD3QffhzSjiPxsfQPEbq3zKM3YrLbNDNHZgUx27sMWfCJ31mM4Bm8TadwcHUlLnab18WB9SzYJlvaIpH10-Agg08OaTL1NEAbXhMGSm803wTh7nb3o7JDgzXE_zb5_ury9uMqvv37-cnF-ne8k_j2HogNpWmWMqFVpVAdcFqYoWt4UpdVdqxnoUtSNEJRT0C03XaE6W2ptLROlOM0-HvpOMdwvkOZqdKmBYbAewpIqVhpWlhIv-w9UcSM0VRrRD_-gu7BEjx-pOMVxaUQZUu-P1FKP0FZTdKON--rv7BA4OwA_3AD7pzyj1R9TVGiK6tEU1c3m6jHAineHil3CAT9VGDQGZqn4DQ9xtNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064678621</pqid></control><display><type>article</type><title>The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>An, Chuanfu ; Wang, Chenggang ; Mou, Zhonglin</creator><creatorcontrib>An, Chuanfu ; Wang, Chenggang ; Mou, Zhonglin</creatorcontrib><description>Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3′-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS–SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14442</identifier><identifier>PMID: 28134437</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Accumulation ; Acetylation ; Aniline ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Bacteria ; Biosynthesis ; Chromatin ; Chromatin - metabolism ; Disease Resistance - genetics ; DNA ; Durability ; Elongation ; Elongator ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant ; Green Fluorescent Proteins - metabolism ; Histone acetyltransferase ; Histone H3 ; Histones ; Histones - metabolism ; Homology ; Immunoprecipitation ; Molecular chains ; Mutants ; Mutation ; nonhost resistance ; Nucleotide sequence ; Pathogen-Associated Molecular Pattern Molecules - metabolism ; PCR ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; plant immunity ; Pseudomonas ; Pseudomonas syringae ; Pseudomonas syringae - physiology ; Reactive oxygen species ; reactive oxygen species (ROS) ; Reactive Oxygen Species - metabolism ; Respiratory burst oxidase ; Salicylic acid ; salicylic acid (SA) ; Salicylic Acid - metabolism ; Xanthomonas ; Xanthomonas - physiology ; Xanthomonas citri</subject><ispartof>The New phytologist, 2017-05, Vol.214 (3), p.1245-1259</ispartof><rights>2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90004230$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90004230$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28134437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Chuanfu</creatorcontrib><creatorcontrib>Wang, Chenggang</creatorcontrib><creatorcontrib>Mou, Zhonglin</creatorcontrib><title>The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3′-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS–SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.</description><subject>Accumulation</subject><subject>Acetylation</subject><subject>Aniline</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Bacteria</subject><subject>Biosynthesis</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Disease Resistance - genetics</subject><subject>DNA</subject><subject>Durability</subject><subject>Elongation</subject><subject>Elongator</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Histone acetyltransferase</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Homology</subject><subject>Immunoprecipitation</subject><subject>Molecular chains</subject><subject>Mutants</subject><subject>Mutation</subject><subject>nonhost resistance</subject><subject>Nucleotide sequence</subject><subject>Pathogen-Associated Molecular Pattern Molecules - metabolism</subject><subject>PCR</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>plant immunity</subject><subject>Pseudomonas</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - physiology</subject><subject>Reactive oxygen species</subject><subject>reactive oxygen species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Respiratory burst oxidase</subject><subject>Salicylic acid</subject><subject>salicylic acid (SA)</subject><subject>Salicylic Acid - metabolism</subject><subject>Xanthomonas</subject><subject>Xanthomonas - physiology</subject><subject>Xanthomonas citri</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9u1DAQxiMEokvhwAOALHHhkq3_xY6PVVUoUlVWoki9RU4y2XiV2KmdFPbBeD-G7tIDJ3zx-JvfjG3Nl2VvGV0zXGd-6tdMSsmfZSsmlclLJvTzbEUpL3Ml1d1J9iqlHaXUFIq_zE44AlIKvcp-3fZAzqOtXRum5BK5HILf2jlE0oRxGuAnQTHC_eIitKRD3QffhzSjiPxsfQPEbq3zKM3YrLbNDNHZgUx27sMWfCJ31mM4Bm8TadwcHUlLnab18WB9SzYJlvaIpH10-Agg08OaTL1NEAbXhMGSm803wTh7nb3o7JDgzXE_zb5_ury9uMqvv37-cnF-ne8k_j2HogNpWmWMqFVpVAdcFqYoWt4UpdVdqxnoUtSNEJRT0C03XaE6W2ptLROlOM0-HvpOMdwvkOZqdKmBYbAewpIqVhpWlhIv-w9UcSM0VRrRD_-gu7BEjx-pOMVxaUQZUu-P1FKP0FZTdKON--rv7BA4OwA_3AD7pzyj1R9TVGiK6tEU1c3m6jHAineHil3CAT9VGDQGZqn4DQ9xtNg</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>An, Chuanfu</creator><creator>Wang, Chenggang</creator><creator>Mou, Zhonglin</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope></search><sort><creationdate>201705</creationdate><title>The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121</title><author>An, Chuanfu ; Wang, Chenggang ; Mou, Zhonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j4002-e5fe49d6993b6896fe245955d2c58a7fd71e783bc33020e7d29f56fa877aa1383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulation</topic><topic>Acetylation</topic><topic>Aniline</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Bacteria</topic><topic>Biosynthesis</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Disease Resistance - genetics</topic><topic>DNA</topic><topic>Durability</topic><topic>Elongation</topic><topic>Elongator</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Histone acetyltransferase</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Homology</topic><topic>Immunoprecipitation</topic><topic>Molecular chains</topic><topic>Mutants</topic><topic>Mutation</topic><topic>nonhost resistance</topic><topic>Nucleotide sequence</topic><topic>Pathogen-Associated Molecular Pattern Molecules - metabolism</topic><topic>PCR</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>plant immunity</topic><topic>Pseudomonas</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - physiology</topic><topic>Reactive oxygen species</topic><topic>reactive oxygen species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Respiratory burst oxidase</topic><topic>Salicylic acid</topic><topic>salicylic acid (SA)</topic><topic>Salicylic Acid - metabolism</topic><topic>Xanthomonas</topic><topic>Xanthomonas - physiology</topic><topic>Xanthomonas citri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Chuanfu</creatorcontrib><creatorcontrib>Wang, Chenggang</creatorcontrib><creatorcontrib>Mou, Zhonglin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Chuanfu</au><au>Wang, Chenggang</au><au>Mou, Zhonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-05</date><risdate>2017</risdate><volume>214</volume><issue>3</issue><spage>1245</spage><epage>1259</epage><pages>1245-1259</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Although in recent years nonhost resistance has attracted considerable attention for its broad spectrum and durability, the genetic and mechanistic components of nonhost resistance have not been fully understood. We used molecular and histochemical approaches including quantitative PCR, chromatin immunoprecipitation, and 3,3′-diaminobenzidine and aniline blue staining. The evolutionarily conserved histone acetyltransferase complex Elongator was identified as a major component of nonhost resistance against Xanthomonas citri subsp. citri (Xcc) and Pseudomonas syringae pv. phaseolicola (Psp) NPS3121. Mutations in Elongator genes inhibit Xcc-, Psp NPS3121- and/or flg22-induced defense responses including defense gene expression, callose deposition, and reactive oxygen species (ROS) and salicylic acid (SA) accumulation. Mutations in Elongator also attenuate the ROS–SA amplification loop. We show that suppressed ROS and SA accumulation in Elongator mutants is correlated with reduced expression of the Arabidopsis respiratory burst oxidase homologue AtrbohD and the SA biosynthesis gene ISOCHORISMATE SYNTHASE1 (ICS1). Furthermore, we found that the Elongator subunit ELP2 is associated with the chromatin of AtrbohD and ICS1 and is required for maintaining basal histone H3 acetylation levels in these key defense genes. As both AtrbohD and ICS1 contribute to nonhost resistance against Xcc, our results reveal an epigenetic mechanism by which Elongator regulates nonhost resistance in Arabidopsis.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28134437</pmid><doi>10.1111/nph.14442</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2017-05, Vol.214 (3), p.1245-1259
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1891884400
source Jstor Complete Legacy; Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accumulation
Acetylation
Aniline
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Bacteria
Biosynthesis
Chromatin
Chromatin - metabolism
Disease Resistance - genetics
DNA
Durability
Elongation
Elongator
Gene expression
Gene Expression Regulation, Plant
Genes
Genes, Plant
Green Fluorescent Proteins - metabolism
Histone acetyltransferase
Histone H3
Histones
Histones - metabolism
Homology
Immunoprecipitation
Molecular chains
Mutants
Mutation
nonhost resistance
Nucleotide sequence
Pathogen-Associated Molecular Pattern Molecules - metabolism
PCR
Plant Diseases - genetics
Plant Diseases - immunology
Plant Diseases - microbiology
plant immunity
Pseudomonas
Pseudomonas syringae
Pseudomonas syringae - physiology
Reactive oxygen species
reactive oxygen species (ROS)
Reactive Oxygen Species - metabolism
Respiratory burst oxidase
Salicylic acid
salicylic acid (SA)
Salicylic Acid - metabolism
Xanthomonas
Xanthomonas - physiology
Xanthomonas citri
title The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Arabidopsis%20Elongator%20complex%20is%20required%20for%20nonhost%20resistance%20against%20the%20bacterial%20pathogens%20Xanthomonas%20citri%20subsp.%20citri%20and%20Pseudomonas%20syringae%20pv.%20phaseolicola%20NPS3121&rft.jtitle=The%20New%20phytologist&rft.au=An,%20Chuanfu&rft.date=2017-05&rft.volume=214&rft.issue=3&rft.spage=1245&rft.epage=1259&rft.pages=1245-1259&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14442&rft_dat=%3Cjstor_proqu%3E90004230%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064678621&rft_id=info:pmid/28134437&rft_jstor_id=90004230&rfr_iscdi=true