Orthogonal topography in the parallel input architecture of songbird HVC
Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucl...
Gespeichert in:
Veröffentlicht in: | Journal of comparative neurology (1911) 2017-06, Vol.525 (9), p.2133-2151 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2151 |
---|---|
container_issue | 9 |
container_start_page | 2133 |
container_title | Journal of comparative neurology (1911) |
container_volume | 525 |
creator | Elliott, Kevin C. Wu, Wei Bertram, Richard Hyson, Richard L. Johnson, Frank |
description | Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al., ). Here, we used a double‐labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single‐labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral‐medial axis whereas NIf input is organized across the rostral‐caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf.
The cortical encoding of zebra finch song sequences is vested within HVC (acronym is name). Here, a double‐labeling strategy reveals modular and highly parallel patterns of neural connectivity transiting HVC. Comparison to primate hand/digit cortex suggests a common network architecture for the motor control of complex sequential behaviors. |
doi_str_mv | 10.1002/cne.24189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891883193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176099482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4149-a38e271f937de1203beaffc2d89cce84af2efe3bbcf5477038e67d7a6b15688c3</originalsourceid><addsrcrecordid>eNqN0ctKxDAYBeAgio6XhS8gBTe6qObS5rKUQR1BdKNuQ5r-mal0mpq0yLy90VEXguKqhH6ckHMQOiT4jGBMz20HZ7QgUm2gCcGK50pysokm6R_JleJiB-3G-IwxVorJbbRDJZGSUzVBs_swLPzcd6bNBt_7eTD9YpU1XTYsIOtNMG0LbTr345CZYBfNAHYYA2TeZdF386oJdTZ7mu6jLWfaCAef3z30eHX5MJ3lt_fXN9OL29wWpFC5YRKoIE4xUQOhmFVgnLO0lspakIVxFBywqrKuLITAiXNRC8MrUnIpLdtDJ-vcPviXEeKgl0200LamAz9GnVpIb2NEsX9QLkqmyrJI9PgHffZjSKVETYngqbdC0r9UulNRWqZWkzpdKxt8jAGc7kOzNGGlCdbve-m0l_7YK9mjz8SxWkL9Lb8GSuB8DV6bFla_J-np3eU68g2XW51u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889225886</pqid></control><display><type>article</type><title>Orthogonal topography in the parallel input architecture of songbird HVC</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Elliott, Kevin C. ; Wu, Wei ; Bertram, Richard ; Hyson, Richard L. ; Johnson, Frank</creator><creatorcontrib>Elliott, Kevin C. ; Wu, Wei ; Bertram, Richard ; Hyson, Richard L. ; Johnson, Frank</creatorcontrib><description>Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al., ). Here, we used a double‐labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single‐labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral‐medial axis whereas NIf input is organized across the rostral‐caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf.
The cortical encoding of zebra finch song sequences is vested within HVC (acronym is name). Here, a double‐labeling strategy reveals modular and highly parallel patterns of neural connectivity transiting HVC. Comparison to primate hand/digit cortex suggests a common network architecture for the motor control of complex sequential behaviors.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.24189</identifier><identifier>PMID: 28188629</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Afferent Pathways - anatomy & histology ; Animals ; Brain Mapping ; Cortex ; Finches - anatomy & histology ; Fish ; Fluoresceins - metabolism ; Functional Laterality ; High Vocal Center - anatomy & histology ; Imaging, Three-Dimensional ; Male ; Microscopy, Fluorescence ; Neurons - physiology ; premotor cortex ; Reflexes ; RRID: SCR_001622 ; RRID: SCR_001775 ; RRID: SCR_014199 ; Sensory neurons ; Song control nuclei ; Taeniopygia guttata ; Topography ; vocal learning ; Vocalization, Animal - physiology ; zebra finch</subject><ispartof>Journal of comparative neurology (1911), 2017-06, Vol.525 (9), p.2133-2151</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4149-a38e271f937de1203beaffc2d89cce84af2efe3bbcf5477038e67d7a6b15688c3</citedby><cites>FETCH-LOGICAL-c4149-a38e271f937de1203beaffc2d89cce84af2efe3bbcf5477038e67d7a6b15688c3</cites><orcidid>0000-0002-6933-2391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.24189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.24189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27913,27914,45563,45564</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28188629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elliott, Kevin C.</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Bertram, Richard</creatorcontrib><creatorcontrib>Hyson, Richard L.</creatorcontrib><creatorcontrib>Johnson, Frank</creatorcontrib><title>Orthogonal topography in the parallel input architecture of songbird HVC</title><title>Journal of comparative neurology (1911)</title><addtitle>J Comp Neurol</addtitle><description>Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al., ). Here, we used a double‐labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single‐labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral‐medial axis whereas NIf input is organized across the rostral‐caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf.
The cortical encoding of zebra finch song sequences is vested within HVC (acronym is name). Here, a double‐labeling strategy reveals modular and highly parallel patterns of neural connectivity transiting HVC. Comparison to primate hand/digit cortex suggests a common network architecture for the motor control of complex sequential behaviors.</description><subject>Afferent Pathways - anatomy & histology</subject><subject>Animals</subject><subject>Brain Mapping</subject><subject>Cortex</subject><subject>Finches - anatomy & histology</subject><subject>Fish</subject><subject>Fluoresceins - metabolism</subject><subject>Functional Laterality</subject><subject>High Vocal Center - anatomy & histology</subject><subject>Imaging, Three-Dimensional</subject><subject>Male</subject><subject>Microscopy, Fluorescence</subject><subject>Neurons - physiology</subject><subject>premotor cortex</subject><subject>Reflexes</subject><subject>RRID: SCR_001622</subject><subject>RRID: SCR_001775</subject><subject>RRID: SCR_014199</subject><subject>Sensory neurons</subject><subject>Song control nuclei</subject><subject>Taeniopygia guttata</subject><subject>Topography</subject><subject>vocal learning</subject><subject>Vocalization, Animal - physiology</subject><subject>zebra finch</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctKxDAYBeAgio6XhS8gBTe6qObS5rKUQR1BdKNuQ5r-mal0mpq0yLy90VEXguKqhH6ckHMQOiT4jGBMz20HZ7QgUm2gCcGK50pysokm6R_JleJiB-3G-IwxVorJbbRDJZGSUzVBs_swLPzcd6bNBt_7eTD9YpU1XTYsIOtNMG0LbTr345CZYBfNAHYYA2TeZdF386oJdTZ7mu6jLWfaCAef3z30eHX5MJ3lt_fXN9OL29wWpFC5YRKoIE4xUQOhmFVgnLO0lspakIVxFBywqrKuLITAiXNRC8MrUnIpLdtDJ-vcPviXEeKgl0200LamAz9GnVpIb2NEsX9QLkqmyrJI9PgHffZjSKVETYngqbdC0r9UulNRWqZWkzpdKxt8jAGc7kOzNGGlCdbve-m0l_7YK9mjz8SxWkL9Lb8GSuB8DV6bFla_J-np3eU68g2XW51u</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Elliott, Kevin C.</creator><creator>Wu, Wei</creator><creator>Bertram, Richard</creator><creator>Hyson, Richard L.</creator><creator>Johnson, Frank</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6933-2391</orcidid></search><sort><creationdate>20170615</creationdate><title>Orthogonal topography in the parallel input architecture of songbird HVC</title><author>Elliott, Kevin C. ; Wu, Wei ; Bertram, Richard ; Hyson, Richard L. ; Johnson, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4149-a38e271f937de1203beaffc2d89cce84af2efe3bbcf5477038e67d7a6b15688c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Afferent Pathways - anatomy & histology</topic><topic>Animals</topic><topic>Brain Mapping</topic><topic>Cortex</topic><topic>Finches - anatomy & histology</topic><topic>Fish</topic><topic>Fluoresceins - metabolism</topic><topic>Functional Laterality</topic><topic>High Vocal Center - anatomy & histology</topic><topic>Imaging, Three-Dimensional</topic><topic>Male</topic><topic>Microscopy, Fluorescence</topic><topic>Neurons - physiology</topic><topic>premotor cortex</topic><topic>Reflexes</topic><topic>RRID: SCR_001622</topic><topic>RRID: SCR_001775</topic><topic>RRID: SCR_014199</topic><topic>Sensory neurons</topic><topic>Song control nuclei</topic><topic>Taeniopygia guttata</topic><topic>Topography</topic><topic>vocal learning</topic><topic>Vocalization, Animal - physiology</topic><topic>zebra finch</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elliott, Kevin C.</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Bertram, Richard</creatorcontrib><creatorcontrib>Hyson, Richard L.</creatorcontrib><creatorcontrib>Johnson, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elliott, Kevin C.</au><au>Wu, Wei</au><au>Bertram, Richard</au><au>Hyson, Richard L.</au><au>Johnson, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal topography in the parallel input architecture of songbird HVC</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J Comp Neurol</addtitle><date>2017-06-15</date><risdate>2017</risdate><volume>525</volume><issue>9</issue><spage>2133</spage><epage>2151</epage><pages>2133-2151</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al., ). Here, we used a double‐labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single‐labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral‐medial axis whereas NIf input is organized across the rostral‐caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf.
The cortical encoding of zebra finch song sequences is vested within HVC (acronym is name). Here, a double‐labeling strategy reveals modular and highly parallel patterns of neural connectivity transiting HVC. Comparison to primate hand/digit cortex suggests a common network architecture for the motor control of complex sequential behaviors.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28188629</pmid><doi>10.1002/cne.24189</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6933-2391</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9967 |
ispartof | Journal of comparative neurology (1911), 2017-06, Vol.525 (9), p.2133-2151 |
issn | 0021-9967 1096-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_1891883193 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Afferent Pathways - anatomy & histology Animals Brain Mapping Cortex Finches - anatomy & histology Fish Fluoresceins - metabolism Functional Laterality High Vocal Center - anatomy & histology Imaging, Three-Dimensional Male Microscopy, Fluorescence Neurons - physiology premotor cortex Reflexes RRID: SCR_001622 RRID: SCR_001775 RRID: SCR_014199 Sensory neurons Song control nuclei Taeniopygia guttata Topography vocal learning Vocalization, Animal - physiology zebra finch |
title | Orthogonal topography in the parallel input architecture of songbird HVC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A22%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20topography%20in%20the%20parallel%20input%20architecture%20of%20songbird%20HVC&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Elliott,%20Kevin%20C.&rft.date=2017-06-15&rft.volume=525&rft.issue=9&rft.spage=2133&rft.epage=2151&rft.pages=2133-2151&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.24189&rft_dat=%3Cproquest_cross%3E2176099482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889225886&rft_id=info:pmid/28188629&rfr_iscdi=true |