Phloem transport of amino acids is differentially altered by phosphorus deficiency according to the nitrogen availability in young barley plants

The phloem transport of amino acids is a key step in the efficient use of nitrogen (N). Despite the importance of this issue, little information is known about the regulation of phloem transport of amino acids in plants with low phosphorus (P) supply and even less in relation to N availability. To t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant growth regulation 2017-05, Vol.82 (1), p.151-160
Hauptverfasser: Criado, Maria V., Veliz, Cintia G., Roberts, Irma N., Caputo, Carla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phloem transport of amino acids is a key step in the efficient use of nitrogen (N). Despite the importance of this issue, little information is known about the regulation of phloem transport of amino acids in plants with low phosphorus (P) supply and even less in relation to N availability. To this end, we studied not only the assimilate partitioning in young barley plants grown with low N or/and P supply, but also we analyzed the implications of the different isoforms of glutamine synthetase, cytokinin oxidase/dehydrogenase 2 and several senescence-related proteases. Our results demonstrated that low P supply causes an accumulation of different nitrogenous compounds in expanded leaves depending on N availability and an inhibition of the phloem exudation rate of amino acids only in high-N plants, indicating an interaction between N and P in the establishment of N-partitioning. The accumulation of nitrogenous compounds in leaves of low-P plants without the accompaniment in amino acid export to the phloem was not related to an increase in nitrate assimilation pathway neither with the modulation of glutamine synthetase 1_1 expression, as it had been observed for N availability. But, these results could be explained as a consequence of a delay in the transition from sink to source of leaves, thus keeping the older leaves as sink organs, as indicated by the increase in cytokinin oxidase/dehydrogenase 2 expression and the repression of several senescence-related proteases in low-P plants with good availability of N.
ISSN:0167-6903
1573-5087
DOI:10.1007/s10725-017-0247-6