Prolactin Promotes Adipose Tissue Fitness and Insulin Sensitivity in Obese Males
Excessive accumulation of body fat triggers insulin resistance and features of the metabolic syndrome. Recently, evidence has accumulated that obesity, type 2 diabetes, and metabolic syndrome are associated with reduced levels of serum prolactin (PRL) in humans and rodents, raising the question of w...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2017-01, Vol.158 (1), p.56-68 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excessive accumulation of body fat triggers insulin resistance and features of the metabolic syndrome. Recently, evidence has accumulated that obesity, type 2 diabetes, and metabolic syndrome are associated with reduced levels of serum prolactin (PRL) in humans and rodents, raising the question of whether low PRL levels contribute to metabolic dysfunction. Here, we have addressed this question by investigating the role of PRL in insulin sensitivity and adipose tissue fitness in obese rodents and humans. In diet-induced obese rats, treatment with PRL delivered via osmotic mini-pumps, improved insulin sensitivity, prevented adipocyte hypertrophy, and reduced inflammatory cytokine expression in visceral fat. PRL also induced increased expression of Pparg and Xbp1s in visceral adipose tissue and elevated circulating adiponectin levels. Conversely, PRL receptor null mice challenged with a high fat diet developed greater insulin resistance, glucose intolerance, and increased adipocyte hypertrophy compared to wild-type mice. In humans, serum PRL values correlated positively with systemic adiponectin levels and were reduced in insulin-resistant patients. Furthermore, PRL circulating levels and PRL produced by adipose tissue correlated directly with the expression of PPARG, ADIPOQ, and GLUT4 in human visceral and subcutaneous adipose tissue. Thus, PRL, acting through its cognate receptors, promotes healthy adipose tissue function and systemic insulin sensitivity. Increasing the levels of PRL in the circulation may have therapeutic potential against obesity-induced metabolic diseases. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2016-1444 |