Origin of felsic volcanism in the Izu arc intra-arc rift

An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to mineralogy and petrology 2017-05, Vol.172 (5), p.1-21, Article 25
Hauptverfasser: Haraguchi, Satoru, Kimura, Jun-Ichi, Senda, Ryoko, Fujinaga, Koichiro, Nakamura, Kentaro, Takaya, Yutaro, Ishii, Teruaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 5
container_start_page 1
container_title Contributions to mineralogy and petrology
container_volume 172
creator Haraguchi, Satoru
Kimura, Jun-Ichi
Senda, Ryoko
Fujinaga, Koichiro
Nakamura, Kentaro
Takaya, Yutaro
Ishii, Teruaki
description An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al 2 O 3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.
doi_str_mv 10.1007/s00410-017-1345-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891875525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321403265</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-87ea9c6699edfb17263a59552b64b2f960728226df1c4a786a4c2e2d4209a663</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWEd_gLsBN26iN5lMHkspWguFbroPaZrUlHnUZEbQX2_KuBDBzc29yXcONwehWwIPBEA8JgBGAAMRmFSsxuQMzQirKAbFxTmaAeRXoZS6RFcpHSDPUtUzJNcx7ENX9r70rknBlh99Y00XUlvm6-HNlcuvsTTR5nGIBp-6GPxwjS68aZK7-TkLtHl53sxf8Wq9WM6fVtiwSg5YCmeU5Vwpt_NbIiivTK3qmm4521KvOAgqKeU7TywzQnLDLHV0xygow3lVoPvJ9hj799GlQbchWdc0pnP9mHT-BZEi-9UZvfuDHvoxdnm5TMmKCaCCZYpMlI19StF5fYyhNfFTE9CnKPUUpc5R6lOUuRSITpqU2W7v4i_nf0Xf395zWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883470274</pqid></control><display><type>article</type><title>Origin of felsic volcanism in the Izu arc intra-arc rift</title><source>Springer Nature - Complete Springer Journals</source><creator>Haraguchi, Satoru ; Kimura, Jun-Ichi ; Senda, Ryoko ; Fujinaga, Koichiro ; Nakamura, Kentaro ; Takaya, Yutaro ; Ishii, Teruaki</creator><creatorcontrib>Haraguchi, Satoru ; Kimura, Jun-Ichi ; Senda, Ryoko ; Fujinaga, Koichiro ; Nakamura, Kentaro ; Takaya, Yutaro ; Ishii, Teruaki</creatorcontrib><description>An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al 2 O 3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-017-1345-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum oxide ; Basalt ; Biotite ; Earth ; Earth and Environmental Science ; Earth Sciences ; Geology ; Hydrothermal activity ; Lava ; Low temperature ; Magma ; Melting ; Melts ; Mineral composition ; Mineral Resources ; Mineralogy ; Minerals ; Oligocene ; Original Paper ; Petrology ; Plagioclase ; Quartz ; Rare earth elements ; Rhyolite ; Rhyolites ; Volcanic activity ; Volcanism ; Volcanology ; Yields ; Zirconium</subject><ispartof>Contributions to mineralogy and petrology, 2017-05, Vol.172 (5), p.1-21, Article 25</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Contributions to Mineralogy and Petrology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-87ea9c6699edfb17263a59552b64b2f960728226df1c4a786a4c2e2d4209a663</citedby><cites>FETCH-LOGICAL-a438t-87ea9c6699edfb17263a59552b64b2f960728226df1c4a786a4c2e2d4209a663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00410-017-1345-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00410-017-1345-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Haraguchi, Satoru</creatorcontrib><creatorcontrib>Kimura, Jun-Ichi</creatorcontrib><creatorcontrib>Senda, Ryoko</creatorcontrib><creatorcontrib>Fujinaga, Koichiro</creatorcontrib><creatorcontrib>Nakamura, Kentaro</creatorcontrib><creatorcontrib>Takaya, Yutaro</creatorcontrib><creatorcontrib>Ishii, Teruaki</creatorcontrib><title>Origin of felsic volcanism in the Izu arc intra-arc rift</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al 2 O 3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.</description><subject>Aluminum oxide</subject><subject>Basalt</subject><subject>Biotite</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Hydrothermal activity</subject><subject>Lava</subject><subject>Low temperature</subject><subject>Magma</subject><subject>Melting</subject><subject>Melts</subject><subject>Mineral composition</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Oligocene</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Plagioclase</subject><subject>Quartz</subject><subject>Rare earth elements</subject><subject>Rhyolite</subject><subject>Rhyolites</subject><subject>Volcanic activity</subject><subject>Volcanism</subject><subject>Volcanology</subject><subject>Yields</subject><subject>Zirconium</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMoWEd_gLsBN26iN5lMHkspWguFbroPaZrUlHnUZEbQX2_KuBDBzc29yXcONwehWwIPBEA8JgBGAAMRmFSsxuQMzQirKAbFxTmaAeRXoZS6RFcpHSDPUtUzJNcx7ENX9r70rknBlh99Y00XUlvm6-HNlcuvsTTR5nGIBp-6GPxwjS68aZK7-TkLtHl53sxf8Wq9WM6fVtiwSg5YCmeU5Vwpt_NbIiivTK3qmm4521KvOAgqKeU7TywzQnLDLHV0xygow3lVoPvJ9hj799GlQbchWdc0pnP9mHT-BZEi-9UZvfuDHvoxdnm5TMmKCaCCZYpMlI19StF5fYyhNfFTE9CnKPUUpc5R6lOUuRSITpqU2W7v4i_nf0Xf395zWQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Haraguchi, Satoru</creator><creator>Kimura, Jun-Ichi</creator><creator>Senda, Ryoko</creator><creator>Fujinaga, Koichiro</creator><creator>Nakamura, Kentaro</creator><creator>Takaya, Yutaro</creator><creator>Ishii, Teruaki</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>20170501</creationdate><title>Origin of felsic volcanism in the Izu arc intra-arc rift</title><author>Haraguchi, Satoru ; Kimura, Jun-Ichi ; Senda, Ryoko ; Fujinaga, Koichiro ; Nakamura, Kentaro ; Takaya, Yutaro ; Ishii, Teruaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-87ea9c6699edfb17263a59552b64b2f960728226df1c4a786a4c2e2d4209a663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>Basalt</topic><topic>Biotite</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Hydrothermal activity</topic><topic>Lava</topic><topic>Low temperature</topic><topic>Magma</topic><topic>Melting</topic><topic>Melts</topic><topic>Mineral composition</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Oligocene</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Plagioclase</topic><topic>Quartz</topic><topic>Rare earth elements</topic><topic>Rhyolite</topic><topic>Rhyolites</topic><topic>Volcanic activity</topic><topic>Volcanism</topic><topic>Volcanology</topic><topic>Yields</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haraguchi, Satoru</creatorcontrib><creatorcontrib>Kimura, Jun-Ichi</creatorcontrib><creatorcontrib>Senda, Ryoko</creatorcontrib><creatorcontrib>Fujinaga, Koichiro</creatorcontrib><creatorcontrib>Nakamura, Kentaro</creatorcontrib><creatorcontrib>Takaya, Yutaro</creatorcontrib><creatorcontrib>Ishii, Teruaki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haraguchi, Satoru</au><au>Kimura, Jun-Ichi</au><au>Senda, Ryoko</au><au>Fujinaga, Koichiro</au><au>Nakamura, Kentaro</au><au>Takaya, Yutaro</au><au>Ishii, Teruaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of felsic volcanism in the Izu arc intra-arc rift</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>172</volume><issue>5</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><artnum>25</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><abstract>An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al 2 O 3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-017-1345-1</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-7999
ispartof Contributions to mineralogy and petrology, 2017-05, Vol.172 (5), p.1-21, Article 25
issn 0010-7999
1432-0967
language eng
recordid cdi_proquest_miscellaneous_1891875525
source Springer Nature - Complete Springer Journals
subjects Aluminum oxide
Basalt
Biotite
Earth
Earth and Environmental Science
Earth Sciences
Geology
Hydrothermal activity
Lava
Low temperature
Magma
Melting
Melts
Mineral composition
Mineral Resources
Mineralogy
Minerals
Oligocene
Original Paper
Petrology
Plagioclase
Quartz
Rare earth elements
Rhyolite
Rhyolites
Volcanic activity
Volcanism
Volcanology
Yields
Zirconium
title Origin of felsic volcanism in the Izu arc intra-arc rift
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20felsic%20volcanism%20in%20the%20Izu%20arc%20intra-arc%20rift&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Haraguchi,%20Satoru&rft.date=2017-05-01&rft.volume=172&rft.issue=5&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.artnum=25&rft.issn=0010-7999&rft.eissn=1432-0967&rft_id=info:doi/10.1007/s00410-017-1345-1&rft_dat=%3Cproquest_cross%3E4321403265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883470274&rft_id=info:pmid/&rfr_iscdi=true