microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis

Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2017-06, Vol.37 (6), p.1058-1067
Hauptverfasser: Ouimet, Mireille, Ediriweera, Hasini, Afonso, Milessa Silva, Ramkhelawon, Bhama, Singaravelu, Ragunath, Liao, Xianghai, Bandler, Rachel C, Rahman, Karishma, Fisher, Edward A, Rayner, Katey J, Pezacki, John P, Tabas, Ira, Moore, Kathryn J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 6
container_start_page 1058
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 37
creator Ouimet, Mireille
Ediriweera, Hasini
Afonso, Milessa Silva
Ramkhelawon, Bhama
Singaravelu, Ragunath
Liao, Xianghai
Bandler, Rachel C
Rahman, Karishma
Fisher, Edward A
Rayner, Katey J
Pezacki, John P
Tabas, Ira
Moore, Kathryn J
description Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lipids to maintain cellular homeostasis. microRNA-33 (miR-33) is a post-transcriptional regulator of genes involved in cholesterol homeostasis, yet the complete mechanisms by which miR-33 controls lipid metabolism are unknown. We investigated whether miR-33 targeting of autophagy contributes to its regulation of cholesterol homeostasis and atherogenesis. Using coherent anti-Stokes Raman scattering microscopy, we show that miR-33 drives lipid droplet accumulation in macrophages, suggesting decreased lipolysis. Inhibition of neutral and lysosomal hydrolysis pathways revealed that miR-33 reduced cholesterol mobilization by a lysosomal-dependent mechanism, implicating repression of autophagy. Indeed, we show that miR-33 targets key autophagy regulators and effectors in macrophages to reduce lipid droplet catabolism, an essential process to generate free cholesterol for efflux. Notably, miR-33 regulation of autophagy lies upstream of its known effects on ABCA1 (ATP-binding cassette transporter A1)-dependent cholesterol efflux, as miR-33 inhibitors fail to increase efflux upon genetic or chemical inhibition of autophagy. Furthermore, we find that miR-33 inhibits apoptotic cell clearance via an autophagy-dependent mechanism. Macrophages treated with anti-miR-33 show increased efferocytosis, lysosomal biogenesis, and degradation of apoptotic material. Finally, we show that treating atherosclerotic mice with anti-miR-33 restores defective autophagy in macrophage foam cells and plaques and promotes apoptotic cell clearance to reduce plaque necrosis. Collectively, these data provide insight into the mechanisms by which miR-33 regulates cellular cholesterol homeostasis and atherosclerosis.
doi_str_mv 10.1161/ATVBAHA.116.308916
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891131282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891131282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-859696bda7b5f282808e591dee72d7db5df618362010b1fca8be9267dfbf87313</originalsourceid><addsrcrecordid>eNo9ULFOwzAQtRCIlsIPMKCMLCk-O7GdgSFUQJEKSFVhtezYboOSpsTJ0L_HoYXl7t7p3Tu9h9A14CkAg7t89fmQz_MBTCkWGbATNIaUJHHCKDsNM-ZZnLKEjNCF918Y44QQfI5GRCREEOBjdF-XRdss3_KY0mhp132lOuujVxW2u41a2yjvu99pH5XbKO82tm18UQ219JfozKnK26tjn6CPp8fVbB4v3p9fZvkiLhJGulikGcuYNorr1IXHAgubZmCs5cRwo1PjGAjKCAaswRVKaJsRxo3TTnAKdIJuD7q7tvnure9kXfrCVpXa2qb3EoJ5oBCkA5UcqMGA9611cteWtWr3ErAcYpPH2AYgD7GFo5ujfq9ra_5P_nKiP4GQZ7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891131282</pqid></control><display><type>article</type><title>microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Ouimet, Mireille ; Ediriweera, Hasini ; Afonso, Milessa Silva ; Ramkhelawon, Bhama ; Singaravelu, Ragunath ; Liao, Xianghai ; Bandler, Rachel C ; Rahman, Karishma ; Fisher, Edward A ; Rayner, Katey J ; Pezacki, John P ; Tabas, Ira ; Moore, Kathryn J</creator><creatorcontrib>Ouimet, Mireille ; Ediriweera, Hasini ; Afonso, Milessa Silva ; Ramkhelawon, Bhama ; Singaravelu, Ragunath ; Liao, Xianghai ; Bandler, Rachel C ; Rahman, Karishma ; Fisher, Edward A ; Rayner, Katey J ; Pezacki, John P ; Tabas, Ira ; Moore, Kathryn J</creatorcontrib><description>Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lipids to maintain cellular homeostasis. microRNA-33 (miR-33) is a post-transcriptional regulator of genes involved in cholesterol homeostasis, yet the complete mechanisms by which miR-33 controls lipid metabolism are unknown. We investigated whether miR-33 targeting of autophagy contributes to its regulation of cholesterol homeostasis and atherogenesis. Using coherent anti-Stokes Raman scattering microscopy, we show that miR-33 drives lipid droplet accumulation in macrophages, suggesting decreased lipolysis. Inhibition of neutral and lysosomal hydrolysis pathways revealed that miR-33 reduced cholesterol mobilization by a lysosomal-dependent mechanism, implicating repression of autophagy. Indeed, we show that miR-33 targets key autophagy regulators and effectors in macrophages to reduce lipid droplet catabolism, an essential process to generate free cholesterol for efflux. Notably, miR-33 regulation of autophagy lies upstream of its known effects on ABCA1 (ATP-binding cassette transporter A1)-dependent cholesterol efflux, as miR-33 inhibitors fail to increase efflux upon genetic or chemical inhibition of autophagy. Furthermore, we find that miR-33 inhibits apoptotic cell clearance via an autophagy-dependent mechanism. Macrophages treated with anti-miR-33 show increased efferocytosis, lysosomal biogenesis, and degradation of apoptotic material. Finally, we show that treating atherosclerotic mice with anti-miR-33 restores defective autophagy in macrophage foam cells and plaques and promotes apoptotic cell clearance to reduce plaque necrosis. Collectively, these data provide insight into the mechanisms by which miR-33 regulates cellular cholesterol homeostasis and atherosclerosis.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.116.308916</identifier><identifier>PMID: 28428217</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Atherosclerosis - genetics ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Autophagy ; Autophagy-Related Protein 5 - deficiency ; Autophagy-Related Protein 5 - genetics ; Cholesterol - metabolism ; Gene Expression Regulation ; Genetic Predisposition to Disease ; Humans ; Jurkat Cells ; Lipid Droplets - metabolism ; Lysosomes - metabolism ; Macrophages, Peritoneal - metabolism ; Macrophages, Peritoneal - pathology ; Mice, Inbred C57BL ; Mice, Knockout ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Necrosis ; Phenotype ; Plaque, Atherosclerotic ; Receptors, LDL - deficiency ; Receptors, LDL - genetics ; Signal Transduction ; Transfection</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2017-06, Vol.37 (6), p.1058-1067</ispartof><rights>2017 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-859696bda7b5f282808e591dee72d7db5df618362010b1fca8be9267dfbf87313</citedby><cites>FETCH-LOGICAL-c462t-859696bda7b5f282808e591dee72d7db5df618362010b1fca8be9267dfbf87313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28428217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ouimet, Mireille</creatorcontrib><creatorcontrib>Ediriweera, Hasini</creatorcontrib><creatorcontrib>Afonso, Milessa Silva</creatorcontrib><creatorcontrib>Ramkhelawon, Bhama</creatorcontrib><creatorcontrib>Singaravelu, Ragunath</creatorcontrib><creatorcontrib>Liao, Xianghai</creatorcontrib><creatorcontrib>Bandler, Rachel C</creatorcontrib><creatorcontrib>Rahman, Karishma</creatorcontrib><creatorcontrib>Fisher, Edward A</creatorcontrib><creatorcontrib>Rayner, Katey J</creatorcontrib><creatorcontrib>Pezacki, John P</creatorcontrib><creatorcontrib>Tabas, Ira</creatorcontrib><creatorcontrib>Moore, Kathryn J</creatorcontrib><title>microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lipids to maintain cellular homeostasis. microRNA-33 (miR-33) is a post-transcriptional regulator of genes involved in cholesterol homeostasis, yet the complete mechanisms by which miR-33 controls lipid metabolism are unknown. We investigated whether miR-33 targeting of autophagy contributes to its regulation of cholesterol homeostasis and atherogenesis. Using coherent anti-Stokes Raman scattering microscopy, we show that miR-33 drives lipid droplet accumulation in macrophages, suggesting decreased lipolysis. Inhibition of neutral and lysosomal hydrolysis pathways revealed that miR-33 reduced cholesterol mobilization by a lysosomal-dependent mechanism, implicating repression of autophagy. Indeed, we show that miR-33 targets key autophagy regulators and effectors in macrophages to reduce lipid droplet catabolism, an essential process to generate free cholesterol for efflux. Notably, miR-33 regulation of autophagy lies upstream of its known effects on ABCA1 (ATP-binding cassette transporter A1)-dependent cholesterol efflux, as miR-33 inhibitors fail to increase efflux upon genetic or chemical inhibition of autophagy. Furthermore, we find that miR-33 inhibits apoptotic cell clearance via an autophagy-dependent mechanism. Macrophages treated with anti-miR-33 show increased efferocytosis, lysosomal biogenesis, and degradation of apoptotic material. Finally, we show that treating atherosclerotic mice with anti-miR-33 restores defective autophagy in macrophage foam cells and plaques and promotes apoptotic cell clearance to reduce plaque necrosis. Collectively, these data provide insight into the mechanisms by which miR-33 regulates cellular cholesterol homeostasis and atherosclerosis.</description><subject>Animals</subject><subject>Atherosclerosis - genetics</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Autophagy</subject><subject>Autophagy-Related Protein 5 - deficiency</subject><subject>Autophagy-Related Protein 5 - genetics</subject><subject>Cholesterol - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Genetic Predisposition to Disease</subject><subject>Humans</subject><subject>Jurkat Cells</subject><subject>Lipid Droplets - metabolism</subject><subject>Lysosomes - metabolism</subject><subject>Macrophages, Peritoneal - metabolism</subject><subject>Macrophages, Peritoneal - pathology</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Necrosis</subject><subject>Phenotype</subject><subject>Plaque, Atherosclerotic</subject><subject>Receptors, LDL - deficiency</subject><subject>Receptors, LDL - genetics</subject><subject>Signal Transduction</subject><subject>Transfection</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9ULFOwzAQtRCIlsIPMKCMLCk-O7GdgSFUQJEKSFVhtezYboOSpsTJ0L_HoYXl7t7p3Tu9h9A14CkAg7t89fmQz_MBTCkWGbATNIaUJHHCKDsNM-ZZnLKEjNCF918Y44QQfI5GRCREEOBjdF-XRdss3_KY0mhp132lOuujVxW2u41a2yjvu99pH5XbKO82tm18UQ219JfozKnK26tjn6CPp8fVbB4v3p9fZvkiLhJGulikGcuYNorr1IXHAgubZmCs5cRwo1PjGAjKCAaswRVKaJsRxo3TTnAKdIJuD7q7tvnure9kXfrCVpXa2qb3EoJ5oBCkA5UcqMGA9611cteWtWr3ErAcYpPH2AYgD7GFo5ujfq9ra_5P_nKiP4GQZ7Y</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Ouimet, Mireille</creator><creator>Ediriweera, Hasini</creator><creator>Afonso, Milessa Silva</creator><creator>Ramkhelawon, Bhama</creator><creator>Singaravelu, Ragunath</creator><creator>Liao, Xianghai</creator><creator>Bandler, Rachel C</creator><creator>Rahman, Karishma</creator><creator>Fisher, Edward A</creator><creator>Rayner, Katey J</creator><creator>Pezacki, John P</creator><creator>Tabas, Ira</creator><creator>Moore, Kathryn J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis</title><author>Ouimet, Mireille ; Ediriweera, Hasini ; Afonso, Milessa Silva ; Ramkhelawon, Bhama ; Singaravelu, Ragunath ; Liao, Xianghai ; Bandler, Rachel C ; Rahman, Karishma ; Fisher, Edward A ; Rayner, Katey J ; Pezacki, John P ; Tabas, Ira ; Moore, Kathryn J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-859696bda7b5f282808e591dee72d7db5df618362010b1fca8be9267dfbf87313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Atherosclerosis - genetics</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Autophagy</topic><topic>Autophagy-Related Protein 5 - deficiency</topic><topic>Autophagy-Related Protein 5 - genetics</topic><topic>Cholesterol - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Genetic Predisposition to Disease</topic><topic>Humans</topic><topic>Jurkat Cells</topic><topic>Lipid Droplets - metabolism</topic><topic>Lysosomes - metabolism</topic><topic>Macrophages, Peritoneal - metabolism</topic><topic>Macrophages, Peritoneal - pathology</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Necrosis</topic><topic>Phenotype</topic><topic>Plaque, Atherosclerotic</topic><topic>Receptors, LDL - deficiency</topic><topic>Receptors, LDL - genetics</topic><topic>Signal Transduction</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouimet, Mireille</creatorcontrib><creatorcontrib>Ediriweera, Hasini</creatorcontrib><creatorcontrib>Afonso, Milessa Silva</creatorcontrib><creatorcontrib>Ramkhelawon, Bhama</creatorcontrib><creatorcontrib>Singaravelu, Ragunath</creatorcontrib><creatorcontrib>Liao, Xianghai</creatorcontrib><creatorcontrib>Bandler, Rachel C</creatorcontrib><creatorcontrib>Rahman, Karishma</creatorcontrib><creatorcontrib>Fisher, Edward A</creatorcontrib><creatorcontrib>Rayner, Katey J</creatorcontrib><creatorcontrib>Pezacki, John P</creatorcontrib><creatorcontrib>Tabas, Ira</creatorcontrib><creatorcontrib>Moore, Kathryn J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouimet, Mireille</au><au>Ediriweera, Hasini</au><au>Afonso, Milessa Silva</au><au>Ramkhelawon, Bhama</au><au>Singaravelu, Ragunath</au><au>Liao, Xianghai</au><au>Bandler, Rachel C</au><au>Rahman, Karishma</au><au>Fisher, Edward A</au><au>Rayner, Katey J</au><au>Pezacki, John P</au><au>Tabas, Ira</au><au>Moore, Kathryn J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>37</volume><issue>6</issue><spage>1058</spage><epage>1067</epage><pages>1058-1067</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lipids to maintain cellular homeostasis. microRNA-33 (miR-33) is a post-transcriptional regulator of genes involved in cholesterol homeostasis, yet the complete mechanisms by which miR-33 controls lipid metabolism are unknown. We investigated whether miR-33 targeting of autophagy contributes to its regulation of cholesterol homeostasis and atherogenesis. Using coherent anti-Stokes Raman scattering microscopy, we show that miR-33 drives lipid droplet accumulation in macrophages, suggesting decreased lipolysis. Inhibition of neutral and lysosomal hydrolysis pathways revealed that miR-33 reduced cholesterol mobilization by a lysosomal-dependent mechanism, implicating repression of autophagy. Indeed, we show that miR-33 targets key autophagy regulators and effectors in macrophages to reduce lipid droplet catabolism, an essential process to generate free cholesterol for efflux. Notably, miR-33 regulation of autophagy lies upstream of its known effects on ABCA1 (ATP-binding cassette transporter A1)-dependent cholesterol efflux, as miR-33 inhibitors fail to increase efflux upon genetic or chemical inhibition of autophagy. Furthermore, we find that miR-33 inhibits apoptotic cell clearance via an autophagy-dependent mechanism. Macrophages treated with anti-miR-33 show increased efferocytosis, lysosomal biogenesis, and degradation of apoptotic material. Finally, we show that treating atherosclerotic mice with anti-miR-33 restores defective autophagy in macrophage foam cells and plaques and promotes apoptotic cell clearance to reduce plaque necrosis. Collectively, these data provide insight into the mechanisms by which miR-33 regulates cellular cholesterol homeostasis and atherosclerosis.</abstract><cop>United States</cop><pmid>28428217</pmid><doi>10.1161/ATVBAHA.116.308916</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2017-06, Vol.37 (6), p.1058-1067
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_1891131282
source MEDLINE; Journals@Ovid Complete; Alma/SFX Local Collection
subjects Animals
Atherosclerosis - genetics
Atherosclerosis - metabolism
Atherosclerosis - pathology
Autophagy
Autophagy-Related Protein 5 - deficiency
Autophagy-Related Protein 5 - genetics
Cholesterol - metabolism
Gene Expression Regulation
Genetic Predisposition to Disease
Humans
Jurkat Cells
Lipid Droplets - metabolism
Lysosomes - metabolism
Macrophages, Peritoneal - metabolism
Macrophages, Peritoneal - pathology
Mice, Inbred C57BL
Mice, Knockout
MicroRNAs - genetics
MicroRNAs - metabolism
Necrosis
Phenotype
Plaque, Atherosclerotic
Receptors, LDL - deficiency
Receptors, LDL - genetics
Signal Transduction
Transfection
title microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=microRNA-33%20Regulates%20Macrophage%20Autophagy%20in%20Atherosclerosis&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Ouimet,%20Mireille&rft.date=2017-06&rft.volume=37&rft.issue=6&rft.spage=1058&rft.epage=1067&rft.pages=1058-1067&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.116.308916&rft_dat=%3Cproquest_cross%3E1891131282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891131282&rft_id=info:pmid/28428217&rfr_iscdi=true