libKEDF: An accelerated library of kinetic energy density functionals

Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2017-06, Vol.38 (17), p.1552-1559
Hauptverfasser: Dieterich, Johannes M., Witt, William C., Carter, Emily A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1559
container_issue 17
container_start_page 1552
container_title Journal of computational chemistry
container_volume 38
creator Dieterich, Johannes M.
Witt, William C.
Carter, Emily A.
description Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc. Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density, and they are used in several electronic structure methods. This contribution introduces libKEDF, a modern software library of KEDF implementations. This research shows that using libKEDF, a single computing node or (GPU) accelerator can provide computational access to mesoscale chemical and materials science phenomena using orbital‐free density functional theory algorithms.
doi_str_mv 10.1002/jcc.24806
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891089572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891089572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4196-d4187d4f7046518ee3d61b917b20958f6f86aa6f9e65e43d0a42e3763f0a1c5b3</originalsourceid><addsrcrecordid>eNp10M1LwzAYBvAgipsfB_8BKXjRw7Y3aZqm3sbc_Bp4UfBW0vSNdHbtTFpk_72pnR4ETy-EHw9PHkLOKIwpAJustB4zLkHskSGFRIwSGb_ukyHQhI2kiOiAHDm3AoAwEvyQDJjkLIqEHJJ5WWSP85vFdTCtAqU1lmhVg3ng362y26A2wXtRYVPoACu0b9sgx8oVzTYwbaWboq5U6U7IgfEHT3f3mLws5s-zu9Hy6fZ-Nl2ONKe-Vs6pjHNuYuC-lEQMc0GzhMYZgySSRhgplBImQREhD3NQnGEYi9CAojrKwmNy2edubP3RomvSdeF851JVWLcupTKhIJMoZp5e_KGrurVd2U5JoCBYp656pW3tnEWTbmyx9v9OKaTdtqnfNv3e1tvzXWKbrTH_lT9jejDpwWdR4vb_pPRhNusjvwD4rYDH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898010622</pqid></control><display><type>article</type><title>libKEDF: An accelerated library of kinetic energy density functionals</title><source>Wiley-Blackwell Journals</source><creator>Dieterich, Johannes M. ; Witt, William C. ; Carter, Emily A.</creator><creatorcontrib>Dieterich, Johannes M. ; Witt, William C. ; Carter, Emily A.</creatorcontrib><description>Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc. Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density, and they are used in several electronic structure methods. This contribution introduces libKEDF, a modern software library of KEDF implementations. This research shows that using libKEDF, a single computing node or (GPU) accelerator can provide computational access to mesoscale chemical and materials science phenomena using orbital‐free density functional theory algorithms.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24806</identifier><identifier>PMID: 28425568</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Chemical engineering ; Density ; Density functional theory ; Electron density ; Electronic structure ; Flux density ; GPU ; Kinetic energy ; kinetic energy density functional ; Kinetics ; library ; Materials science ; orbital‐free density functional theory</subject><ispartof>Journal of computational chemistry, 2017-06, Vol.38 (17), p.1552-1559</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4196-d4187d4f7046518ee3d61b917b20958f6f86aa6f9e65e43d0a42e3763f0a1c5b3</citedby><cites>FETCH-LOGICAL-c4196-d4187d4f7046518ee3d61b917b20958f6f86aa6f9e65e43d0a42e3763f0a1c5b3</cites><orcidid>0000-0001-7330-7554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.24806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.24806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28425568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dieterich, Johannes M.</creatorcontrib><creatorcontrib>Witt, William C.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><title>libKEDF: An accelerated library of kinetic energy density functionals</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc. Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density, and they are used in several electronic structure methods. This contribution introduces libKEDF, a modern software library of KEDF implementations. This research shows that using libKEDF, a single computing node or (GPU) accelerator can provide computational access to mesoscale chemical and materials science phenomena using orbital‐free density functional theory algorithms.</description><subject>Algorithms</subject><subject>Chemical engineering</subject><subject>Density</subject><subject>Density functional theory</subject><subject>Electron density</subject><subject>Electronic structure</subject><subject>Flux density</subject><subject>GPU</subject><subject>Kinetic energy</subject><subject>kinetic energy density functional</subject><subject>Kinetics</subject><subject>library</subject><subject>Materials science</subject><subject>orbital‐free density functional theory</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10M1LwzAYBvAgipsfB_8BKXjRw7Y3aZqm3sbc_Bp4UfBW0vSNdHbtTFpk_72pnR4ETy-EHw9PHkLOKIwpAJustB4zLkHskSGFRIwSGb_ukyHQhI2kiOiAHDm3AoAwEvyQDJjkLIqEHJJ5WWSP85vFdTCtAqU1lmhVg3ng362y26A2wXtRYVPoACu0b9sgx8oVzTYwbaWboq5U6U7IgfEHT3f3mLws5s-zu9Hy6fZ-Nl2ONKe-Vs6pjHNuYuC-lEQMc0GzhMYZgySSRhgplBImQREhD3NQnGEYi9CAojrKwmNy2edubP3RomvSdeF851JVWLcupTKhIJMoZp5e_KGrurVd2U5JoCBYp656pW3tnEWTbmyx9v9OKaTdtqnfNv3e1tvzXWKbrTH_lT9jejDpwWdR4vb_pPRhNusjvwD4rYDH</recordid><startdate>20170630</startdate><enddate>20170630</enddate><creator>Dieterich, Johannes M.</creator><creator>Witt, William C.</creator><creator>Carter, Emily A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7330-7554</orcidid></search><sort><creationdate>20170630</creationdate><title>libKEDF: An accelerated library of kinetic energy density functionals</title><author>Dieterich, Johannes M. ; Witt, William C. ; Carter, Emily A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4196-d4187d4f7046518ee3d61b917b20958f6f86aa6f9e65e43d0a42e3763f0a1c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chemical engineering</topic><topic>Density</topic><topic>Density functional theory</topic><topic>Electron density</topic><topic>Electronic structure</topic><topic>Flux density</topic><topic>GPU</topic><topic>Kinetic energy</topic><topic>kinetic energy density functional</topic><topic>Kinetics</topic><topic>library</topic><topic>Materials science</topic><topic>orbital‐free density functional theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieterich, Johannes M.</creatorcontrib><creatorcontrib>Witt, William C.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieterich, Johannes M.</au><au>Witt, William C.</au><au>Carter, Emily A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>libKEDF: An accelerated library of kinetic energy density functionals</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2017-06-30</date><risdate>2017</risdate><volume>38</volume><issue>17</issue><spage>1552</spage><epage>1559</epage><pages>1552-1559</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc. Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density, and they are used in several electronic structure methods. This contribution introduces libKEDF, a modern software library of KEDF implementations. This research shows that using libKEDF, a single computing node or (GPU) accelerator can provide computational access to mesoscale chemical and materials science phenomena using orbital‐free density functional theory algorithms.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28425568</pmid><doi>10.1002/jcc.24806</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7330-7554</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2017-06, Vol.38 (17), p.1552-1559
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_1891089572
source Wiley-Blackwell Journals
subjects Algorithms
Chemical engineering
Density
Density functional theory
Electron density
Electronic structure
Flux density
GPU
Kinetic energy
kinetic energy density functional
Kinetics
library
Materials science
orbital‐free density functional theory
title libKEDF: An accelerated library of kinetic energy density functionals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=libKEDF:%20An%20accelerated%20library%20of%20kinetic%20energy%20density%20functionals&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Dieterich,%20Johannes%20M.&rft.date=2017-06-30&rft.volume=38&rft.issue=17&rft.spage=1552&rft.epage=1559&rft.pages=1552-1559&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.24806&rft_dat=%3Cproquest_cross%3E1891089572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898010622&rft_id=info:pmid/28425568&rfr_iscdi=true