libKEDF: An accelerated library of kinetic energy density functionals
Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2017-06, Vol.38 (17), p.1552-1559 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1559 |
---|---|
container_issue | 17 |
container_start_page | 1552 |
container_title | Journal of computational chemistry |
container_volume | 38 |
creator | Dieterich, Johannes M. Witt, William C. Carter, Emily A. |
description | Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc.
Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density, and they are used in several electronic structure methods. This contribution introduces libKEDF, a modern software library of KEDF implementations. This research shows that using libKEDF, a single computing node or (GPU) accelerator can provide computational access to mesoscale chemical and materials science phenomena using orbital‐free density functional theory algorithms. |
doi_str_mv | 10.1002/jcc.24806 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891089572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891089572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4196-d4187d4f7046518ee3d61b917b20958f6f86aa6f9e65e43d0a42e3763f0a1c5b3</originalsourceid><addsrcrecordid>eNp10M1LwzAYBvAgipsfB_8BKXjRw7Y3aZqm3sbc_Bp4UfBW0vSNdHbtTFpk_72pnR4ETy-EHw9PHkLOKIwpAJustB4zLkHskSGFRIwSGb_ukyHQhI2kiOiAHDm3AoAwEvyQDJjkLIqEHJJ5WWSP85vFdTCtAqU1lmhVg3ng362y26A2wXtRYVPoACu0b9sgx8oVzTYwbaWboq5U6U7IgfEHT3f3mLws5s-zu9Hy6fZ-Nl2ONKe-Vs6pjHNuYuC-lEQMc0GzhMYZgySSRhgplBImQREhD3NQnGEYi9CAojrKwmNy2edubP3RomvSdeF851JVWLcupTKhIJMoZp5e_KGrurVd2U5JoCBYp656pW3tnEWTbmyx9v9OKaTdtqnfNv3e1tvzXWKbrTH_lT9jejDpwWdR4vb_pPRhNusjvwD4rYDH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898010622</pqid></control><display><type>article</type><title>libKEDF: An accelerated library of kinetic energy density functionals</title><source>Wiley-Blackwell Journals</source><creator>Dieterich, Johannes M. ; Witt, William C. ; Carter, Emily A.</creator><creatorcontrib>Dieterich, Johannes M. ; Witt, William C. ; Carter, Emily A.</creatorcontrib><description>Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc.
Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density, and they are used in several electronic structure methods. This contribution introduces libKEDF, a modern software library of KEDF implementations. This research shows that using libKEDF, a single computing node or (GPU) accelerator can provide computational access to mesoscale chemical and materials science phenomena using orbital‐free density functional theory algorithms.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.24806</identifier><identifier>PMID: 28425568</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Chemical engineering ; Density ; Density functional theory ; Electron density ; Electronic structure ; Flux density ; GPU ; Kinetic energy ; kinetic energy density functional ; Kinetics ; library ; Materials science ; orbital‐free density functional theory</subject><ispartof>Journal of computational chemistry, 2017-06, Vol.38 (17), p.1552-1559</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4196-d4187d4f7046518ee3d61b917b20958f6f86aa6f9e65e43d0a42e3763f0a1c5b3</citedby><cites>FETCH-LOGICAL-c4196-d4187d4f7046518ee3d61b917b20958f6f86aa6f9e65e43d0a42e3763f0a1c5b3</cites><orcidid>0000-0001-7330-7554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.24806$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.24806$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28425568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dieterich, Johannes M.</creatorcontrib><creatorcontrib>Witt, William C.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><title>libKEDF: An accelerated library of kinetic energy density functionals</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc.
Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density, and they are used in several electronic structure methods. This contribution introduces libKEDF, a modern software library of KEDF implementations. This research shows that using libKEDF, a single computing node or (GPU) accelerator can provide computational access to mesoscale chemical and materials science phenomena using orbital‐free density functional theory algorithms.</description><subject>Algorithms</subject><subject>Chemical engineering</subject><subject>Density</subject><subject>Density functional theory</subject><subject>Electron density</subject><subject>Electronic structure</subject><subject>Flux density</subject><subject>GPU</subject><subject>Kinetic energy</subject><subject>kinetic energy density functional</subject><subject>Kinetics</subject><subject>library</subject><subject>Materials science</subject><subject>orbital‐free density functional theory</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10M1LwzAYBvAgipsfB_8BKXjRw7Y3aZqm3sbc_Bp4UfBW0vSNdHbtTFpk_72pnR4ETy-EHw9PHkLOKIwpAJustB4zLkHskSGFRIwSGb_ukyHQhI2kiOiAHDm3AoAwEvyQDJjkLIqEHJJ5WWSP85vFdTCtAqU1lmhVg3ng362y26A2wXtRYVPoACu0b9sgx8oVzTYwbaWboq5U6U7IgfEHT3f3mLws5s-zu9Hy6fZ-Nl2ONKe-Vs6pjHNuYuC-lEQMc0GzhMYZgySSRhgplBImQREhD3NQnGEYi9CAojrKwmNy2edubP3RomvSdeF851JVWLcupTKhIJMoZp5e_KGrurVd2U5JoCBYp656pW3tnEWTbmyx9v9OKaTdtqnfNv3e1tvzXWKbrTH_lT9jejDpwWdR4vb_pPRhNusjvwD4rYDH</recordid><startdate>20170630</startdate><enddate>20170630</enddate><creator>Dieterich, Johannes M.</creator><creator>Witt, William C.</creator><creator>Carter, Emily A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7330-7554</orcidid></search><sort><creationdate>20170630</creationdate><title>libKEDF: An accelerated library of kinetic energy density functionals</title><author>Dieterich, Johannes M. ; Witt, William C. ; Carter, Emily A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4196-d4187d4f7046518ee3d61b917b20958f6f86aa6f9e65e43d0a42e3763f0a1c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chemical engineering</topic><topic>Density</topic><topic>Density functional theory</topic><topic>Electron density</topic><topic>Electronic structure</topic><topic>Flux density</topic><topic>GPU</topic><topic>Kinetic energy</topic><topic>kinetic energy density functional</topic><topic>Kinetics</topic><topic>library</topic><topic>Materials science</topic><topic>orbital‐free density functional theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieterich, Johannes M.</creatorcontrib><creatorcontrib>Witt, William C.</creatorcontrib><creatorcontrib>Carter, Emily A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieterich, Johannes M.</au><au>Witt, William C.</au><au>Carter, Emily A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>libKEDF: An accelerated library of kinetic energy density functionals</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2017-06-30</date><risdate>2017</risdate><volume>38</volume><issue>17</issue><spage>1552</spage><epage>1559</epage><pages>1552-1559</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital‐free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc.
Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density, and they are used in several electronic structure methods. This contribution introduces libKEDF, a modern software library of KEDF implementations. This research shows that using libKEDF, a single computing node or (GPU) accelerator can provide computational access to mesoscale chemical and materials science phenomena using orbital‐free density functional theory algorithms.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28425568</pmid><doi>10.1002/jcc.24806</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7330-7554</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2017-06, Vol.38 (17), p.1552-1559 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_1891089572 |
source | Wiley-Blackwell Journals |
subjects | Algorithms Chemical engineering Density Density functional theory Electron density Electronic structure Flux density GPU Kinetic energy kinetic energy density functional Kinetics library Materials science orbital‐free density functional theory |
title | libKEDF: An accelerated library of kinetic energy density functionals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=libKEDF:%20An%20accelerated%20library%20of%20kinetic%20energy%20density%20functionals&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Dieterich,%20Johannes%20M.&rft.date=2017-06-30&rft.volume=38&rft.issue=17&rft.spage=1552&rft.epage=1559&rft.pages=1552-1559&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.24806&rft_dat=%3Cproquest_cross%3E1891089572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898010622&rft_id=info:pmid/28425568&rfr_iscdi=true |