Doubly Nonparametric Sparse Nonnegative Matrix Factorization Based on Dependent Indian Buffet Processes
Sparse nonnegative matrix factorization (SNMF) aims to factorize a data matrix into two optimized nonnegative sparse factor matrices, which could benefit many tasks, such as document-word co-clustering. However, the traditional SNMF typically assumes the number of latent factors (i.e., dimensionalit...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2018-05, Vol.29 (5), p.1835-1849 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!