Detection of driver drowsiness using wearable devices: A feasibility study of the proximity sensor

Drowsiness is one of the major factors that cause crashes in the transportation industry. Drowsiness detection systems can alert drowsy operators and potentially reduce the risk of crashes. In this study, a Google-Glass-based drowsiness detection system was developed and validated. The proximity sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied ergonomics 2017-11, Vol.65, p.473-480
Hauptverfasser: He, Jibo, Choi, William, Yang, Yan, Lu, Junshi, Wu, Xiaohui, Peng, Kaiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue
container_start_page 473
container_title Applied ergonomics
container_volume 65
creator He, Jibo
Choi, William
Yang, Yan
Lu, Junshi
Wu, Xiaohui
Peng, Kaiping
description Drowsiness is one of the major factors that cause crashes in the transportation industry. Drowsiness detection systems can alert drowsy operators and potentially reduce the risk of crashes. In this study, a Google-Glass-based drowsiness detection system was developed and validated. The proximity sensor of Google Glass was used to monitor eye blink frequency. A simulated driving study was carried out to validate the system. Driving performance and eye blinks were compared between the two states of alertness and drowsiness while driving. Drowsy drivers increased frequency of eye blinks, produced longer braking response time and increased lane deviation, compared to when they were alert. A threshold algorithm for proximity sensor can reliably detect eye blinks and proved the feasibility of using Google Glass to detect operator drowsiness. This technology provides a new platform to detect operator drowsiness and has the potential to reduce drowsiness-related crashes in driving and aviation. •The infrared proximity sensor can monitor eye blinks.•The thresholding algorithm can use proximity value to detect eye blinks.•Prolonged driving increases eye blink frequency.•Longtime driving impairs driving performance.
doi_str_mv 10.1016/j.apergo.2017.02.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1889764835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003687017300522</els_id><sourcerecordid>1889764835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-7922a593def02fe5487e57bb91969f59eb12e17c9c347b0de12fd21242aace9a3</originalsourceid><addsrcrecordid>eNp9kDtv2zAUhYkiQe24_QdFwTGLFJKiRLJDACPNCzCQJZkJirxKaciiS0pO_e9Dx2nGTAf34NzXh9APSkpKaHOxLs0W4nMoGaGiJKzM5hc0p1KwQlHWnKA5IaQqGinIDJ2ltM6l5LT-imZMcka4ZHPU_oYR7OjDgEOHXfQ7iFnCS_IDpISnrM_4BUw0bQ_Ywc5bSL_wEndgkm9978c9TuPk9ocB4x_A2xj--c2bDUMK8Rs67Uyf4Pu7LtDTzfXj1V2xeri9v1quCstFMxZCMWZqVTnoCOug5lJALdpWUdWorlbQUgZUWGUrLlrigLLOMco4M8aCMtUCnR_n5gP-TpBGvfHJQt-bAcKUNJVSiYbLqs5RfozaGFKK0Olt9BsT95oSfaCr1_pIVx_oasJ0NnPbz_cNU7sB99H0H2cOXB4DkP_ceYg6WQ-DBedjpqxd8J9veAVrLI62</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889764835</pqid></control><display><type>article</type><title>Detection of driver drowsiness using wearable devices: A feasibility study of the proximity sensor</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>He, Jibo ; Choi, William ; Yang, Yan ; Lu, Junshi ; Wu, Xiaohui ; Peng, Kaiping</creator><creatorcontrib>He, Jibo ; Choi, William ; Yang, Yan ; Lu, Junshi ; Wu, Xiaohui ; Peng, Kaiping</creatorcontrib><description>Drowsiness is one of the major factors that cause crashes in the transportation industry. Drowsiness detection systems can alert drowsy operators and potentially reduce the risk of crashes. In this study, a Google-Glass-based drowsiness detection system was developed and validated. The proximity sensor of Google Glass was used to monitor eye blink frequency. A simulated driving study was carried out to validate the system. Driving performance and eye blinks were compared between the two states of alertness and drowsiness while driving. Drowsy drivers increased frequency of eye blinks, produced longer braking response time and increased lane deviation, compared to when they were alert. A threshold algorithm for proximity sensor can reliably detect eye blinks and proved the feasibility of using Google Glass to detect operator drowsiness. This technology provides a new platform to detect operator drowsiness and has the potential to reduce drowsiness-related crashes in driving and aviation. •The infrared proximity sensor can monitor eye blinks.•The thresholding algorithm can use proximity value to detect eye blinks.•Prolonged driving increases eye blink frequency.•Longtime driving impairs driving performance.</description><identifier>ISSN: 0003-6870</identifier><identifier>EISSN: 1872-9126</identifier><identifier>DOI: 10.1016/j.apergo.2017.02.016</identifier><identifier>PMID: 28420482</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Algorithms ; Attention ; Automobile Driving - psychology ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Blinking ; Driver drowsiness ; Eye Movement Measurements - instrumentation ; Eye Movements ; Feasibility Studies ; Female ; Humans ; Male ; Proximity sensor ; Sleep Stages - physiology ; Wearable device ; Wearable Electronic Devices ; Young Adult</subject><ispartof>Applied ergonomics, 2017-11, Vol.65, p.473-480</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-7922a593def02fe5487e57bb91969f59eb12e17c9c347b0de12fd21242aace9a3</citedby><cites>FETCH-LOGICAL-c476t-7922a593def02fe5487e57bb91969f59eb12e17c9c347b0de12fd21242aace9a3</cites><orcidid>0000-0002-5110-581X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003687017300522$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28420482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Jibo</creatorcontrib><creatorcontrib>Choi, William</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Lu, Junshi</creatorcontrib><creatorcontrib>Wu, Xiaohui</creatorcontrib><creatorcontrib>Peng, Kaiping</creatorcontrib><title>Detection of driver drowsiness using wearable devices: A feasibility study of the proximity sensor</title><title>Applied ergonomics</title><addtitle>Appl Ergon</addtitle><description>Drowsiness is one of the major factors that cause crashes in the transportation industry. Drowsiness detection systems can alert drowsy operators and potentially reduce the risk of crashes. In this study, a Google-Glass-based drowsiness detection system was developed and validated. The proximity sensor of Google Glass was used to monitor eye blink frequency. A simulated driving study was carried out to validate the system. Driving performance and eye blinks were compared between the two states of alertness and drowsiness while driving. Drowsy drivers increased frequency of eye blinks, produced longer braking response time and increased lane deviation, compared to when they were alert. A threshold algorithm for proximity sensor can reliably detect eye blinks and proved the feasibility of using Google Glass to detect operator drowsiness. This technology provides a new platform to detect operator drowsiness and has the potential to reduce drowsiness-related crashes in driving and aviation. •The infrared proximity sensor can monitor eye blinks.•The thresholding algorithm can use proximity value to detect eye blinks.•Prolonged driving increases eye blink frequency.•Longtime driving impairs driving performance.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Attention</subject><subject>Automobile Driving - psychology</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Blinking</subject><subject>Driver drowsiness</subject><subject>Eye Movement Measurements - instrumentation</subject><subject>Eye Movements</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Proximity sensor</subject><subject>Sleep Stages - physiology</subject><subject>Wearable device</subject><subject>Wearable Electronic Devices</subject><subject>Young Adult</subject><issn>0003-6870</issn><issn>1872-9126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtv2zAUhYkiQe24_QdFwTGLFJKiRLJDACPNCzCQJZkJirxKaciiS0pO_e9Dx2nGTAf34NzXh9APSkpKaHOxLs0W4nMoGaGiJKzM5hc0p1KwQlHWnKA5IaQqGinIDJ2ltM6l5LT-imZMcka4ZHPU_oYR7OjDgEOHXfQ7iFnCS_IDpISnrM_4BUw0bQ_Ywc5bSL_wEndgkm9978c9TuPk9ocB4x_A2xj--c2bDUMK8Rs67Uyf4Pu7LtDTzfXj1V2xeri9v1quCstFMxZCMWZqVTnoCOug5lJALdpWUdWorlbQUgZUWGUrLlrigLLOMco4M8aCMtUCnR_n5gP-TpBGvfHJQt-bAcKUNJVSiYbLqs5RfozaGFKK0Olt9BsT95oSfaCr1_pIVx_oasJ0NnPbz_cNU7sB99H0H2cOXB4DkP_ceYg6WQ-DBedjpqxd8J9veAVrLI62</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>He, Jibo</creator><creator>Choi, William</creator><creator>Yang, Yan</creator><creator>Lu, Junshi</creator><creator>Wu, Xiaohui</creator><creator>Peng, Kaiping</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5110-581X</orcidid></search><sort><creationdate>20171101</creationdate><title>Detection of driver drowsiness using wearable devices: A feasibility study of the proximity sensor</title><author>He, Jibo ; Choi, William ; Yang, Yan ; Lu, Junshi ; Wu, Xiaohui ; Peng, Kaiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-7922a593def02fe5487e57bb91969f59eb12e17c9c347b0de12fd21242aace9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Attention</topic><topic>Automobile Driving - psychology</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Blinking</topic><topic>Driver drowsiness</topic><topic>Eye Movement Measurements - instrumentation</topic><topic>Eye Movements</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Proximity sensor</topic><topic>Sleep Stages - physiology</topic><topic>Wearable device</topic><topic>Wearable Electronic Devices</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jibo</creatorcontrib><creatorcontrib>Choi, William</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Lu, Junshi</creatorcontrib><creatorcontrib>Wu, Xiaohui</creatorcontrib><creatorcontrib>Peng, Kaiping</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied ergonomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jibo</au><au>Choi, William</au><au>Yang, Yan</au><au>Lu, Junshi</au><au>Wu, Xiaohui</au><au>Peng, Kaiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of driver drowsiness using wearable devices: A feasibility study of the proximity sensor</atitle><jtitle>Applied ergonomics</jtitle><addtitle>Appl Ergon</addtitle><date>2017-11-01</date><risdate>2017</risdate><volume>65</volume><spage>473</spage><epage>480</epage><pages>473-480</pages><issn>0003-6870</issn><eissn>1872-9126</eissn><abstract>Drowsiness is one of the major factors that cause crashes in the transportation industry. Drowsiness detection systems can alert drowsy operators and potentially reduce the risk of crashes. In this study, a Google-Glass-based drowsiness detection system was developed and validated. The proximity sensor of Google Glass was used to monitor eye blink frequency. A simulated driving study was carried out to validate the system. Driving performance and eye blinks were compared between the two states of alertness and drowsiness while driving. Drowsy drivers increased frequency of eye blinks, produced longer braking response time and increased lane deviation, compared to when they were alert. A threshold algorithm for proximity sensor can reliably detect eye blinks and proved the feasibility of using Google Glass to detect operator drowsiness. This technology provides a new platform to detect operator drowsiness and has the potential to reduce drowsiness-related crashes in driving and aviation. •The infrared proximity sensor can monitor eye blinks.•The thresholding algorithm can use proximity value to detect eye blinks.•Prolonged driving increases eye blink frequency.•Longtime driving impairs driving performance.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28420482</pmid><doi>10.1016/j.apergo.2017.02.016</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5110-581X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6870
ispartof Applied ergonomics, 2017-11, Vol.65, p.473-480
issn 0003-6870
1872-9126
language eng
recordid cdi_proquest_miscellaneous_1889764835
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Algorithms
Attention
Automobile Driving - psychology
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Blinking
Driver drowsiness
Eye Movement Measurements - instrumentation
Eye Movements
Feasibility Studies
Female
Humans
Male
Proximity sensor
Sleep Stages - physiology
Wearable device
Wearable Electronic Devices
Young Adult
title Detection of driver drowsiness using wearable devices: A feasibility study of the proximity sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20driver%20drowsiness%20using%20wearable%20devices:%20A%20feasibility%20study%20of%20the%20proximity%20sensor&rft.jtitle=Applied%20ergonomics&rft.au=He,%20Jibo&rft.date=2017-11-01&rft.volume=65&rft.spage=473&rft.epage=480&rft.pages=473-480&rft.issn=0003-6870&rft.eissn=1872-9126&rft_id=info:doi/10.1016/j.apergo.2017.02.016&rft_dat=%3Cproquest_cross%3E1889764835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889764835&rft_id=info:pmid/28420482&rft_els_id=S0003687017300522&rfr_iscdi=true