MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors
Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed...
Gespeichert in:
Veröffentlicht in: | The Journal of pathology 2017-07, Vol.242 (3), p.347-357 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 3 |
container_start_page | 347 |
container_title | The Journal of pathology |
container_volume | 242 |
creator | Ducassou, Stéphane Prouzet‐Mauléon, Valérie Deau, Marie‐Céline Brunet de la Grange, Philippe Cardinaud, Bruno Soueidan, Hayssam Quelen, Cathy Brousset, Pierre Pasquet, Jean‐Max Moreau‐Gaudry, François Arock, Michel Mahon, François‐Xavier Lippert, Eric |
description | Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed in CD34‐positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB–GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT‐7 cells also showed basophilic differentiation after MYB–GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB–GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB–GATA1‐expressing CD34‐positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)‐33 and nerve growth factor (NGF), the ligands of IL‐1 receptor‐like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB–GATA1‐expressing UT‐7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34‐positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB–GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB–GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL‐33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/path.4908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1889385270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910218166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-c04f1e37e31dbe581eeff537fa416f0ac15ad9e2dde93742c3d1d732ec506b6c3</originalsourceid><addsrcrecordid>eNp1kb9uFDEQxi0EIpdAwQsgSzRQbOKx949Nd0SQIAVBcRRUls875hx21xt796J0eYRIvGGeBB8XKJCoZkbfT59m5iPkBbBjYIyfjGbaHJeKyUdkAUzVhZKqfkwWWeOFKKE5IIcpXTLGlKqqp-SAyxIka_iCpE_f3t3f_jxbrpZA3Zx8GOgYQx8mTHRtUhg3vvOWdjj_MNh785b6YRu6LfY4TDS4PE4Yd7If7m_vhKBmaOmAcYv0ewzX04Y6Y6cQaUSLY27SM_LEmS7h84d6RL5-eL86PS8uPp99PF1eFFZUQhaWlQ5QNCigXWMlAdG5SjTOlFA7ZixUplXI2xaVaEpuRQttIzjaitXr2ooj8nrvmw-6mjFNuvfJYteZAcOcNEiphKx4wzL66h_0MsxxyNtpUMA4SKjrTL3ZUzaGlCI6PUbfm3ijgeldEnqXhN4lkdmXD47zusf2L_nn9Rk42QPXvsOb_zvpL8vV-W_LXwl5lhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910218166</pqid></control><display><type>article</type><title>MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ducassou, Stéphane ; Prouzet‐Mauléon, Valérie ; Deau, Marie‐Céline ; Brunet de la Grange, Philippe ; Cardinaud, Bruno ; Soueidan, Hayssam ; Quelen, Cathy ; Brousset, Pierre ; Pasquet, Jean‐Max ; Moreau‐Gaudry, François ; Arock, Michel ; Mahon, François‐Xavier ; Lippert, Eric</creator><creatorcontrib>Ducassou, Stéphane ; Prouzet‐Mauléon, Valérie ; Deau, Marie‐Céline ; Brunet de la Grange, Philippe ; Cardinaud, Bruno ; Soueidan, Hayssam ; Quelen, Cathy ; Brousset, Pierre ; Pasquet, Jean‐Max ; Moreau‐Gaudry, François ; Arock, Michel ; Mahon, François‐Xavier ; Lippert, Eric</creatorcontrib><description>Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed in CD34‐positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB–GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT‐7 cells also showed basophilic differentiation after MYB–GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB–GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB–GATA1‐expressing CD34‐positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)‐33 and nerve growth factor (NGF), the ligands of IL‐1 receptor‐like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB–GATA1‐expressing UT‐7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34‐positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB–GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB–GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL‐33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.4908</identifier><identifier>PMID: 28418072</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Assaying ; basophils ; CD34 antigen ; Cell Transformation, Neoplastic - genetics ; Cytokines ; Female ; Fusion protein ; GATA-1 protein ; GATA1 Transcription Factor - genetics ; Gene Fusion - physiology ; Growth factor receptors ; Growth factors ; Hematopoietic Stem Cells - physiology ; IL1RL1 ; Immunodeficiency ; Infants ; Interleukin 1 ; Interleukin 1 receptors ; Interleukin-33 - physiology ; leukaemia ; Leukemia ; Leukemia, Basophilic, Acute - etiology ; Ligands ; Male ; Mice ; Mice, SCID ; MYB–GATA1 ; Neoplasm Transplantation ; Nerve growth factor ; Nerve growth factor receptors ; NTRK1 ; Oncogene Proteins v-myb - genetics ; Polymerase chain reaction ; Protein-tyrosine kinase receptors ; Receptor, trkA - metabolism ; Receptors, Nerve Growth Factor - physiology ; Reverse transcription ; Rodents ; Stem cells ; Transcription Factors - metabolism ; Transfection ; Translocation ; Transplantation, Heterologous</subject><ispartof>The Journal of pathology, 2017-07, Vol.242 (3), p.347-357</ispartof><rights>Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</rights><rights>Copyright © 2017 Pathological Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-c04f1e37e31dbe581eeff537fa416f0ac15ad9e2dde93742c3d1d732ec506b6c3</citedby><cites>FETCH-LOGICAL-c3538-c04f1e37e31dbe581eeff537fa416f0ac15ad9e2dde93742c3d1d732ec506b6c3</cites><orcidid>0000-0001-7736-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.4908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.4908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28418072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ducassou, Stéphane</creatorcontrib><creatorcontrib>Prouzet‐Mauléon, Valérie</creatorcontrib><creatorcontrib>Deau, Marie‐Céline</creatorcontrib><creatorcontrib>Brunet de la Grange, Philippe</creatorcontrib><creatorcontrib>Cardinaud, Bruno</creatorcontrib><creatorcontrib>Soueidan, Hayssam</creatorcontrib><creatorcontrib>Quelen, Cathy</creatorcontrib><creatorcontrib>Brousset, Pierre</creatorcontrib><creatorcontrib>Pasquet, Jean‐Max</creatorcontrib><creatorcontrib>Moreau‐Gaudry, François</creatorcontrib><creatorcontrib>Arock, Michel</creatorcontrib><creatorcontrib>Mahon, François‐Xavier</creatorcontrib><creatorcontrib>Lippert, Eric</creatorcontrib><title>MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors</title><title>The Journal of pathology</title><addtitle>J Pathol</addtitle><description>Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed in CD34‐positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB–GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT‐7 cells also showed basophilic differentiation after MYB–GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB–GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB–GATA1‐expressing CD34‐positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)‐33 and nerve growth factor (NGF), the ligands of IL‐1 receptor‐like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB–GATA1‐expressing UT‐7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34‐positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB–GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB–GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL‐33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</description><subject>Animals</subject><subject>Assaying</subject><subject>basophils</subject><subject>CD34 antigen</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cytokines</subject><subject>Female</subject><subject>Fusion protein</subject><subject>GATA-1 protein</subject><subject>GATA1 Transcription Factor - genetics</subject><subject>Gene Fusion - physiology</subject><subject>Growth factor receptors</subject><subject>Growth factors</subject><subject>Hematopoietic Stem Cells - physiology</subject><subject>IL1RL1</subject><subject>Immunodeficiency</subject><subject>Infants</subject><subject>Interleukin 1</subject><subject>Interleukin 1 receptors</subject><subject>Interleukin-33 - physiology</subject><subject>leukaemia</subject><subject>Leukemia</subject><subject>Leukemia, Basophilic, Acute - etiology</subject><subject>Ligands</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>MYB–GATA1</subject><subject>Neoplasm Transplantation</subject><subject>Nerve growth factor</subject><subject>Nerve growth factor receptors</subject><subject>NTRK1</subject><subject>Oncogene Proteins v-myb - genetics</subject><subject>Polymerase chain reaction</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Receptor, trkA - metabolism</subject><subject>Receptors, Nerve Growth Factor - physiology</subject><subject>Reverse transcription</subject><subject>Rodents</subject><subject>Stem cells</subject><subject>Transcription Factors - metabolism</subject><subject>Transfection</subject><subject>Translocation</subject><subject>Transplantation, Heterologous</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb9uFDEQxi0EIpdAwQsgSzRQbOKx949Nd0SQIAVBcRRUls875hx21xt796J0eYRIvGGeBB8XKJCoZkbfT59m5iPkBbBjYIyfjGbaHJeKyUdkAUzVhZKqfkwWWeOFKKE5IIcpXTLGlKqqp-SAyxIka_iCpE_f3t3f_jxbrpZA3Zx8GOgYQx8mTHRtUhg3vvOWdjj_MNh785b6YRu6LfY4TDS4PE4Yd7If7m_vhKBmaOmAcYv0ewzX04Y6Y6cQaUSLY27SM_LEmS7h84d6RL5-eL86PS8uPp99PF1eFFZUQhaWlQ5QNCigXWMlAdG5SjTOlFA7ZixUplXI2xaVaEpuRQttIzjaitXr2ooj8nrvmw-6mjFNuvfJYteZAcOcNEiphKx4wzL66h_0MsxxyNtpUMA4SKjrTL3ZUzaGlCI6PUbfm3ijgeldEnqXhN4lkdmXD47zusf2L_nn9Rk42QPXvsOb_zvpL8vV-W_LXwl5lhg</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Ducassou, Stéphane</creator><creator>Prouzet‐Mauléon, Valérie</creator><creator>Deau, Marie‐Céline</creator><creator>Brunet de la Grange, Philippe</creator><creator>Cardinaud, Bruno</creator><creator>Soueidan, Hayssam</creator><creator>Quelen, Cathy</creator><creator>Brousset, Pierre</creator><creator>Pasquet, Jean‐Max</creator><creator>Moreau‐Gaudry, François</creator><creator>Arock, Michel</creator><creator>Mahon, François‐Xavier</creator><creator>Lippert, Eric</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7736-0838</orcidid></search><sort><creationdate>201707</creationdate><title>MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors</title><author>Ducassou, Stéphane ; Prouzet‐Mauléon, Valérie ; Deau, Marie‐Céline ; Brunet de la Grange, Philippe ; Cardinaud, Bruno ; Soueidan, Hayssam ; Quelen, Cathy ; Brousset, Pierre ; Pasquet, Jean‐Max ; Moreau‐Gaudry, François ; Arock, Michel ; Mahon, François‐Xavier ; Lippert, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-c04f1e37e31dbe581eeff537fa416f0ac15ad9e2dde93742c3d1d732ec506b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Assaying</topic><topic>basophils</topic><topic>CD34 antigen</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cytokines</topic><topic>Female</topic><topic>Fusion protein</topic><topic>GATA-1 protein</topic><topic>GATA1 Transcription Factor - genetics</topic><topic>Gene Fusion - physiology</topic><topic>Growth factor receptors</topic><topic>Growth factors</topic><topic>Hematopoietic Stem Cells - physiology</topic><topic>IL1RL1</topic><topic>Immunodeficiency</topic><topic>Infants</topic><topic>Interleukin 1</topic><topic>Interleukin 1 receptors</topic><topic>Interleukin-33 - physiology</topic><topic>leukaemia</topic><topic>Leukemia</topic><topic>Leukemia, Basophilic, Acute - etiology</topic><topic>Ligands</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>MYB–GATA1</topic><topic>Neoplasm Transplantation</topic><topic>Nerve growth factor</topic><topic>Nerve growth factor receptors</topic><topic>NTRK1</topic><topic>Oncogene Proteins v-myb - genetics</topic><topic>Polymerase chain reaction</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Receptor, trkA - metabolism</topic><topic>Receptors, Nerve Growth Factor - physiology</topic><topic>Reverse transcription</topic><topic>Rodents</topic><topic>Stem cells</topic><topic>Transcription Factors - metabolism</topic><topic>Transfection</topic><topic>Translocation</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ducassou, Stéphane</creatorcontrib><creatorcontrib>Prouzet‐Mauléon, Valérie</creatorcontrib><creatorcontrib>Deau, Marie‐Céline</creatorcontrib><creatorcontrib>Brunet de la Grange, Philippe</creatorcontrib><creatorcontrib>Cardinaud, Bruno</creatorcontrib><creatorcontrib>Soueidan, Hayssam</creatorcontrib><creatorcontrib>Quelen, Cathy</creatorcontrib><creatorcontrib>Brousset, Pierre</creatorcontrib><creatorcontrib>Pasquet, Jean‐Max</creatorcontrib><creatorcontrib>Moreau‐Gaudry, François</creatorcontrib><creatorcontrib>Arock, Michel</creatorcontrib><creatorcontrib>Mahon, François‐Xavier</creatorcontrib><creatorcontrib>Lippert, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ducassou, Stéphane</au><au>Prouzet‐Mauléon, Valérie</au><au>Deau, Marie‐Céline</au><au>Brunet de la Grange, Philippe</au><au>Cardinaud, Bruno</au><au>Soueidan, Hayssam</au><au>Quelen, Cathy</au><au>Brousset, Pierre</au><au>Pasquet, Jean‐Max</au><au>Moreau‐Gaudry, François</au><au>Arock, Michel</au><au>Mahon, François‐Xavier</au><au>Lippert, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J Pathol</addtitle><date>2017-07</date><risdate>2017</risdate><volume>242</volume><issue>3</issue><spage>347</spage><epage>357</epage><pages>347-357</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed in CD34‐positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB–GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT‐7 cells also showed basophilic differentiation after MYB–GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB–GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB–GATA1‐expressing CD34‐positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)‐33 and nerve growth factor (NGF), the ligands of IL‐1 receptor‐like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB–GATA1‐expressing UT‐7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34‐positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB–GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB–GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL‐33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>28418072</pmid><doi>10.1002/path.4908</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7736-0838</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3417 |
ispartof | The Journal of pathology, 2017-07, Vol.242 (3), p.347-357 |
issn | 0022-3417 1096-9896 |
language | eng |
recordid | cdi_proquest_miscellaneous_1889385270 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Assaying basophils CD34 antigen Cell Transformation, Neoplastic - genetics Cytokines Female Fusion protein GATA-1 protein GATA1 Transcription Factor - genetics Gene Fusion - physiology Growth factor receptors Growth factors Hematopoietic Stem Cells - physiology IL1RL1 Immunodeficiency Infants Interleukin 1 Interleukin 1 receptors Interleukin-33 - physiology leukaemia Leukemia Leukemia, Basophilic, Acute - etiology Ligands Male Mice Mice, SCID MYB–GATA1 Neoplasm Transplantation Nerve growth factor Nerve growth factor receptors NTRK1 Oncogene Proteins v-myb - genetics Polymerase chain reaction Protein-tyrosine kinase receptors Receptor, trkA - metabolism Receptors, Nerve Growth Factor - physiology Reverse transcription Rodents Stem cells Transcription Factors - metabolism Transfection Translocation Transplantation, Heterologous |
title | MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MYB%E2%80%93GATA1%20fusion%20promotes%20basophilic%20leukaemia:%20involvement%20of%20interleukin%E2%80%9033%20and%20nerve%20growth%20factor%20receptors&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Ducassou,%20St%C3%A9phane&rft.date=2017-07&rft.volume=242&rft.issue=3&rft.spage=347&rft.epage=357&rft.pages=347-357&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.4908&rft_dat=%3Cproquest_cross%3E1910218166%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910218166&rft_id=info:pmid/28418072&rfr_iscdi=true |