MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors

Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2017-07, Vol.242 (3), p.347-357
Hauptverfasser: Ducassou, Stéphane, Prouzet‐Mauléon, Valérie, Deau, Marie‐Céline, Brunet de la Grange, Philippe, Cardinaud, Bruno, Soueidan, Hayssam, Quelen, Cathy, Brousset, Pierre, Pasquet, Jean‐Max, Moreau‐Gaudry, François, Arock, Michel, Mahon, François‐Xavier, Lippert, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue 3
container_start_page 347
container_title The Journal of pathology
container_volume 242
creator Ducassou, Stéphane
Prouzet‐Mauléon, Valérie
Deau, Marie‐Céline
Brunet de la Grange, Philippe
Cardinaud, Bruno
Soueidan, Hayssam
Quelen, Cathy
Brousset, Pierre
Pasquet, Jean‐Max
Moreau‐Gaudry, François
Arock, Michel
Mahon, François‐Xavier
Lippert, Eric
description Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed in CD34‐positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB–GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT‐7 cells also showed basophilic differentiation after MYB–GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB–GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB–GATA1‐expressing CD34‐positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)‐33 and nerve growth factor (NGF), the ligands of IL‐1 receptor‐like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB–GATA1‐expressing UT‐7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34‐positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB–GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB–GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL‐33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
doi_str_mv 10.1002/path.4908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1889385270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910218166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3538-c04f1e37e31dbe581eeff537fa416f0ac15ad9e2dde93742c3d1d732ec506b6c3</originalsourceid><addsrcrecordid>eNp1kb9uFDEQxi0EIpdAwQsgSzRQbOKx949Nd0SQIAVBcRRUls875hx21xt796J0eYRIvGGeBB8XKJCoZkbfT59m5iPkBbBjYIyfjGbaHJeKyUdkAUzVhZKqfkwWWeOFKKE5IIcpXTLGlKqqp-SAyxIka_iCpE_f3t3f_jxbrpZA3Zx8GOgYQx8mTHRtUhg3vvOWdjj_MNh785b6YRu6LfY4TDS4PE4Yd7If7m_vhKBmaOmAcYv0ewzX04Y6Y6cQaUSLY27SM_LEmS7h84d6RL5-eL86PS8uPp99PF1eFFZUQhaWlQ5QNCigXWMlAdG5SjTOlFA7ZixUplXI2xaVaEpuRQttIzjaitXr2ooj8nrvmw-6mjFNuvfJYteZAcOcNEiphKx4wzL66h_0MsxxyNtpUMA4SKjrTL3ZUzaGlCI6PUbfm3ijgeldEnqXhN4lkdmXD47zusf2L_nn9Rk42QPXvsOb_zvpL8vV-W_LXwl5lhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910218166</pqid></control><display><type>article</type><title>MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ducassou, Stéphane ; Prouzet‐Mauléon, Valérie ; Deau, Marie‐Céline ; Brunet de la Grange, Philippe ; Cardinaud, Bruno ; Soueidan, Hayssam ; Quelen, Cathy ; Brousset, Pierre ; Pasquet, Jean‐Max ; Moreau‐Gaudry, François ; Arock, Michel ; Mahon, François‐Xavier ; Lippert, Eric</creator><creatorcontrib>Ducassou, Stéphane ; Prouzet‐Mauléon, Valérie ; Deau, Marie‐Céline ; Brunet de la Grange, Philippe ; Cardinaud, Bruno ; Soueidan, Hayssam ; Quelen, Cathy ; Brousset, Pierre ; Pasquet, Jean‐Max ; Moreau‐Gaudry, François ; Arock, Michel ; Mahon, François‐Xavier ; Lippert, Eric</creatorcontrib><description>Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed in CD34‐positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB–GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT‐7 cells also showed basophilic differentiation after MYB–GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB–GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB–GATA1‐expressing CD34‐positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)‐33 and nerve growth factor (NGF), the ligands of IL‐1 receptor‐like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB–GATA1‐expressing UT‐7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34‐positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB–GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB–GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL‐33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.4908</identifier><identifier>PMID: 28418072</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; Assaying ; basophils ; CD34 antigen ; Cell Transformation, Neoplastic - genetics ; Cytokines ; Female ; Fusion protein ; GATA-1 protein ; GATA1 Transcription Factor - genetics ; Gene Fusion - physiology ; Growth factor receptors ; Growth factors ; Hematopoietic Stem Cells - physiology ; IL1RL1 ; Immunodeficiency ; Infants ; Interleukin 1 ; Interleukin 1 receptors ; Interleukin-33 - physiology ; leukaemia ; Leukemia ; Leukemia, Basophilic, Acute - etiology ; Ligands ; Male ; Mice ; Mice, SCID ; MYB–GATA1 ; Neoplasm Transplantation ; Nerve growth factor ; Nerve growth factor receptors ; NTRK1 ; Oncogene Proteins v-myb - genetics ; Polymerase chain reaction ; Protein-tyrosine kinase receptors ; Receptor, trkA - metabolism ; Receptors, Nerve Growth Factor - physiology ; Reverse transcription ; Rodents ; Stem cells ; Transcription Factors - metabolism ; Transfection ; Translocation ; Transplantation, Heterologous</subject><ispartof>The Journal of pathology, 2017-07, Vol.242 (3), p.347-357</ispartof><rights>Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 Pathological Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3538-c04f1e37e31dbe581eeff537fa416f0ac15ad9e2dde93742c3d1d732ec506b6c3</citedby><cites>FETCH-LOGICAL-c3538-c04f1e37e31dbe581eeff537fa416f0ac15ad9e2dde93742c3d1d732ec506b6c3</cites><orcidid>0000-0001-7736-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.4908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.4908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28418072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ducassou, Stéphane</creatorcontrib><creatorcontrib>Prouzet‐Mauléon, Valérie</creatorcontrib><creatorcontrib>Deau, Marie‐Céline</creatorcontrib><creatorcontrib>Brunet de la Grange, Philippe</creatorcontrib><creatorcontrib>Cardinaud, Bruno</creatorcontrib><creatorcontrib>Soueidan, Hayssam</creatorcontrib><creatorcontrib>Quelen, Cathy</creatorcontrib><creatorcontrib>Brousset, Pierre</creatorcontrib><creatorcontrib>Pasquet, Jean‐Max</creatorcontrib><creatorcontrib>Moreau‐Gaudry, François</creatorcontrib><creatorcontrib>Arock, Michel</creatorcontrib><creatorcontrib>Mahon, François‐Xavier</creatorcontrib><creatorcontrib>Lippert, Eric</creatorcontrib><title>MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors</title><title>The Journal of pathology</title><addtitle>J Pathol</addtitle><description>Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed in CD34‐positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB–GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT‐7 cells also showed basophilic differentiation after MYB–GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB–GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB–GATA1‐expressing CD34‐positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)‐33 and nerve growth factor (NGF), the ligands of IL‐1 receptor‐like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB–GATA1‐expressing UT‐7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34‐positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB–GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB–GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL‐33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</description><subject>Animals</subject><subject>Assaying</subject><subject>basophils</subject><subject>CD34 antigen</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cytokines</subject><subject>Female</subject><subject>Fusion protein</subject><subject>GATA-1 protein</subject><subject>GATA1 Transcription Factor - genetics</subject><subject>Gene Fusion - physiology</subject><subject>Growth factor receptors</subject><subject>Growth factors</subject><subject>Hematopoietic Stem Cells - physiology</subject><subject>IL1RL1</subject><subject>Immunodeficiency</subject><subject>Infants</subject><subject>Interleukin 1</subject><subject>Interleukin 1 receptors</subject><subject>Interleukin-33 - physiology</subject><subject>leukaemia</subject><subject>Leukemia</subject><subject>Leukemia, Basophilic, Acute - etiology</subject><subject>Ligands</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>MYB–GATA1</subject><subject>Neoplasm Transplantation</subject><subject>Nerve growth factor</subject><subject>Nerve growth factor receptors</subject><subject>NTRK1</subject><subject>Oncogene Proteins v-myb - genetics</subject><subject>Polymerase chain reaction</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Receptor, trkA - metabolism</subject><subject>Receptors, Nerve Growth Factor - physiology</subject><subject>Reverse transcription</subject><subject>Rodents</subject><subject>Stem cells</subject><subject>Transcription Factors - metabolism</subject><subject>Transfection</subject><subject>Translocation</subject><subject>Transplantation, Heterologous</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb9uFDEQxi0EIpdAwQsgSzRQbOKx949Nd0SQIAVBcRRUls875hx21xt796J0eYRIvGGeBB8XKJCoZkbfT59m5iPkBbBjYIyfjGbaHJeKyUdkAUzVhZKqfkwWWeOFKKE5IIcpXTLGlKqqp-SAyxIka_iCpE_f3t3f_jxbrpZA3Zx8GOgYQx8mTHRtUhg3vvOWdjj_MNh785b6YRu6LfY4TDS4PE4Yd7If7m_vhKBmaOmAcYv0ewzX04Y6Y6cQaUSLY27SM_LEmS7h84d6RL5-eL86PS8uPp99PF1eFFZUQhaWlQ5QNCigXWMlAdG5SjTOlFA7ZixUplXI2xaVaEpuRQttIzjaitXr2ooj8nrvmw-6mjFNuvfJYteZAcOcNEiphKx4wzL66h_0MsxxyNtpUMA4SKjrTL3ZUzaGlCI6PUbfm3ijgeldEnqXhN4lkdmXD47zusf2L_nn9Rk42QPXvsOb_zvpL8vV-W_LXwl5lhg</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Ducassou, Stéphane</creator><creator>Prouzet‐Mauléon, Valérie</creator><creator>Deau, Marie‐Céline</creator><creator>Brunet de la Grange, Philippe</creator><creator>Cardinaud, Bruno</creator><creator>Soueidan, Hayssam</creator><creator>Quelen, Cathy</creator><creator>Brousset, Pierre</creator><creator>Pasquet, Jean‐Max</creator><creator>Moreau‐Gaudry, François</creator><creator>Arock, Michel</creator><creator>Mahon, François‐Xavier</creator><creator>Lippert, Eric</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7736-0838</orcidid></search><sort><creationdate>201707</creationdate><title>MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors</title><author>Ducassou, Stéphane ; Prouzet‐Mauléon, Valérie ; Deau, Marie‐Céline ; Brunet de la Grange, Philippe ; Cardinaud, Bruno ; Soueidan, Hayssam ; Quelen, Cathy ; Brousset, Pierre ; Pasquet, Jean‐Max ; Moreau‐Gaudry, François ; Arock, Michel ; Mahon, François‐Xavier ; Lippert, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3538-c04f1e37e31dbe581eeff537fa416f0ac15ad9e2dde93742c3d1d732ec506b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Assaying</topic><topic>basophils</topic><topic>CD34 antigen</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cytokines</topic><topic>Female</topic><topic>Fusion protein</topic><topic>GATA-1 protein</topic><topic>GATA1 Transcription Factor - genetics</topic><topic>Gene Fusion - physiology</topic><topic>Growth factor receptors</topic><topic>Growth factors</topic><topic>Hematopoietic Stem Cells - physiology</topic><topic>IL1RL1</topic><topic>Immunodeficiency</topic><topic>Infants</topic><topic>Interleukin 1</topic><topic>Interleukin 1 receptors</topic><topic>Interleukin-33 - physiology</topic><topic>leukaemia</topic><topic>Leukemia</topic><topic>Leukemia, Basophilic, Acute - etiology</topic><topic>Ligands</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>MYB–GATA1</topic><topic>Neoplasm Transplantation</topic><topic>Nerve growth factor</topic><topic>Nerve growth factor receptors</topic><topic>NTRK1</topic><topic>Oncogene Proteins v-myb - genetics</topic><topic>Polymerase chain reaction</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Receptor, trkA - metabolism</topic><topic>Receptors, Nerve Growth Factor - physiology</topic><topic>Reverse transcription</topic><topic>Rodents</topic><topic>Stem cells</topic><topic>Transcription Factors - metabolism</topic><topic>Transfection</topic><topic>Translocation</topic><topic>Transplantation, Heterologous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ducassou, Stéphane</creatorcontrib><creatorcontrib>Prouzet‐Mauléon, Valérie</creatorcontrib><creatorcontrib>Deau, Marie‐Céline</creatorcontrib><creatorcontrib>Brunet de la Grange, Philippe</creatorcontrib><creatorcontrib>Cardinaud, Bruno</creatorcontrib><creatorcontrib>Soueidan, Hayssam</creatorcontrib><creatorcontrib>Quelen, Cathy</creatorcontrib><creatorcontrib>Brousset, Pierre</creatorcontrib><creatorcontrib>Pasquet, Jean‐Max</creatorcontrib><creatorcontrib>Moreau‐Gaudry, François</creatorcontrib><creatorcontrib>Arock, Michel</creatorcontrib><creatorcontrib>Mahon, François‐Xavier</creatorcontrib><creatorcontrib>Lippert, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ducassou, Stéphane</au><au>Prouzet‐Mauléon, Valérie</au><au>Deau, Marie‐Céline</au><au>Brunet de la Grange, Philippe</au><au>Cardinaud, Bruno</au><au>Soueidan, Hayssam</au><au>Quelen, Cathy</au><au>Brousset, Pierre</au><au>Pasquet, Jean‐Max</au><au>Moreau‐Gaudry, François</au><au>Arock, Michel</au><au>Mahon, François‐Xavier</au><au>Lippert, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J Pathol</addtitle><date>2017-07</date><risdate>2017</risdate><volume>242</volume><issue>3</issue><spage>347</spage><epage>357</epage><pages>347-357</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><abstract>Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB–GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB–GATA1 transcription factor was expressed in CD34‐positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB–GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT‐7 cells also showed basophilic differentiation after MYB–GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB–GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB–GATA1‐expressing CD34‐positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)‐33 and nerve growth factor (NGF), the ligands of IL‐1 receptor‐like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB–GATA1‐expressing UT‐7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34‐positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB–GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB–GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL‐33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>28418072</pmid><doi>10.1002/path.4908</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7736-0838</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3417
ispartof The Journal of pathology, 2017-07, Vol.242 (3), p.347-357
issn 0022-3417
1096-9896
language eng
recordid cdi_proquest_miscellaneous_1889385270
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Assaying
basophils
CD34 antigen
Cell Transformation, Neoplastic - genetics
Cytokines
Female
Fusion protein
GATA-1 protein
GATA1 Transcription Factor - genetics
Gene Fusion - physiology
Growth factor receptors
Growth factors
Hematopoietic Stem Cells - physiology
IL1RL1
Immunodeficiency
Infants
Interleukin 1
Interleukin 1 receptors
Interleukin-33 - physiology
leukaemia
Leukemia
Leukemia, Basophilic, Acute - etiology
Ligands
Male
Mice
Mice, SCID
MYB–GATA1
Neoplasm Transplantation
Nerve growth factor
Nerve growth factor receptors
NTRK1
Oncogene Proteins v-myb - genetics
Polymerase chain reaction
Protein-tyrosine kinase receptors
Receptor, trkA - metabolism
Receptors, Nerve Growth Factor - physiology
Reverse transcription
Rodents
Stem cells
Transcription Factors - metabolism
Transfection
Translocation
Transplantation, Heterologous
title MYB–GATA1 fusion promotes basophilic leukaemia: involvement of interleukin‐33 and nerve growth factor receptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MYB%E2%80%93GATA1%20fusion%20promotes%20basophilic%20leukaemia:%20involvement%20of%20interleukin%E2%80%9033%20and%20nerve%20growth%20factor%20receptors&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Ducassou,%20St%C3%A9phane&rft.date=2017-07&rft.volume=242&rft.issue=3&rft.spage=347&rft.epage=357&rft.pages=347-357&rft.issn=0022-3417&rft.eissn=1096-9896&rft_id=info:doi/10.1002/path.4908&rft_dat=%3Cproquest_cross%3E1910218166%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910218166&rft_id=info:pmid/28418072&rfr_iscdi=true