Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions

Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2017-03, Vol.95 (3-1), p.032609-032609, Article 032609
Hauptverfasser: Kuznetsov, Andrey A, Pshenichnikov, Alexander F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 032609
container_issue 3-1
container_start_page 032609
container_title Physical review. E
container_volume 95
creator Kuznetsov, Andrey A
Pshenichnikov, Alexander F
description Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ, the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.
doi_str_mv 10.1103/PhysRevE.95.032609
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1889382494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1889382494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-7840697abce9cc0ccaa07a1e6ec3111a624ab792270506f88e6ad98abcfb38dc3</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EolXpH2BAGVlSru087BFV5SFVAvFYWCLHuWmN8qrtgPrvSRXa6ZzhO2f4CLmmsKAU-N3rdu_e8Ge1kPECOEtAnpEpi1IIAWJ-fupRPCFz574BgA5QStklmTAR0ZgzOiVf71iYGhuvvGmbAHe9qUxuTV8HbRnUatOgNzpoVNN2yg61Qhf8Gr8NnLdtswkK07UVhmMEpvFolT58uStyUarK4fw_Z-TzYfWxfArXL4_Py_t1qDlwH6YigkSmKtcotQatlYJUUUxQc0qpSlik8lQylkIMSSkEJqqQYuDLnItC8xm5HX872-56dD6rjdNYVarBtncZFUJywSIZDSgbUW1b5yyWWWdNrew-o5AdtGZHrZmMs1HrMLr5_-_zGovT5CiR_wEOUndY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889382494</pqid></control><display><type>article</type><title>Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions</title><source>American Physical Society</source><creator>Kuznetsov, Andrey A ; Pshenichnikov, Alexander F</creator><creatorcontrib>Kuznetsov, Andrey A ; Pshenichnikov, Alexander F</creatorcontrib><description>Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ, the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.95.032609</identifier><identifier>PMID: 28415321</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2017-03, Vol.95 (3-1), p.032609-032609, Article 032609</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-7840697abce9cc0ccaa07a1e6ec3111a624ab792270506f88e6ad98abcfb38dc3</citedby><cites>FETCH-LOGICAL-c303t-7840697abce9cc0ccaa07a1e6ec3111a624ab792270506f88e6ad98abcfb38dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28415321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuznetsov, Andrey A</creatorcontrib><creatorcontrib>Pshenichnikov, Alexander F</creatorcontrib><title>Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ, the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EolXpH2BAGVlSru087BFV5SFVAvFYWCLHuWmN8qrtgPrvSRXa6ZzhO2f4CLmmsKAU-N3rdu_e8Ge1kPECOEtAnpEpi1IIAWJ-fupRPCFz574BgA5QStklmTAR0ZgzOiVf71iYGhuvvGmbAHe9qUxuTV8HbRnUatOgNzpoVNN2yg61Qhf8Gr8NnLdtswkK07UVhmMEpvFolT58uStyUarK4fw_Z-TzYfWxfArXL4_Py_t1qDlwH6YigkSmKtcotQatlYJUUUxQc0qpSlik8lQylkIMSSkEJqqQYuDLnItC8xm5HX872-56dD6rjdNYVarBtncZFUJywSIZDSgbUW1b5yyWWWdNrew-o5AdtGZHrZmMs1HrMLr5_-_zGovT5CiR_wEOUndY</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Kuznetsov, Andrey A</creator><creator>Pshenichnikov, Alexander F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201703</creationdate><title>Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions</title><author>Kuznetsov, Andrey A ; Pshenichnikov, Alexander F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-7840697abce9cc0ccaa07a1e6ec3111a624ab792270506f88e6ad98abcfb38dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznetsov, Andrey A</creatorcontrib><creatorcontrib>Pshenichnikov, Alexander F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznetsov, Andrey A</au><au>Pshenichnikov, Alexander F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2017-03</date><risdate>2017</risdate><volume>95</volume><issue>3-1</issue><spage>032609</spage><epage>032609</epage><pages>032609-032609</pages><artnum>032609</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ, the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.</abstract><cop>United States</cop><pmid>28415321</pmid><doi>10.1103/PhysRevE.95.032609</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2017-03, Vol.95 (3-1), p.032609-032609, Article 032609
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1889382494
source American Physical Society
title Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sedimentation%20equilibrium%20of%20magnetic%20nanoparticles%20with%20strong%20dipole-dipole%20interactions&rft.jtitle=Physical%20review.%20E&rft.au=Kuznetsov,%20Andrey%20A&rft.date=2017-03&rft.volume=95&rft.issue=3-1&rft.spage=032609&rft.epage=032609&rft.pages=032609-032609&rft.artnum=032609&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.95.032609&rft_dat=%3Cproquest_cross%3E1889382494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889382494&rft_id=info:pmid/28415321&rfr_iscdi=true