A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance
The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body flu...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2017-06, Vol.75, p.95-103 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | |
container_start_page | 95 |
container_title | Materials Science & Engineering C |
container_volume | 75 |
creator | Mukhametkaliyev, T.M. Surmeneva, M.A. Vladescu, A. Cotrut, C.M. Braic, M. Dinu, M. Vranceanu, M.D. Pana, I. Mueller, M. Surmenev, R.A. |
description | The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy.
•The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy.•The HA coating significantly reduces the corrosion current density.•The HA coating significantly improves the polarization resistance in vitro.•The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF. |
doi_str_mv | 10.1016/j.msec.2017.02.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1889382163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493116314734</els_id><sourcerecordid>1889382163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-5b67d2bd82bdae0136ed9e012ce96f2eded71defd04a22077e5c39a2b55e86f3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6BzxIwIuXblNJf6TBy7D4BQte9uQlpJPqmQzdyZikdx3wx5thVg8ePBR1qOd9qaqXkNfAamDQvT_US0JTcwZ9zXjNhHhCNiB7UTEY4CnZsIHLqhkEXJEXKR0Y66To-XNyxWUDbdvChvza0tEFi7uorR5npNvvA9BF7zwmty5Uz3M4URN0RksfXN5TTfPeeeq1DynH1eQ1ltH-ZGP4edJHnV1GOoVI3XKM4d75XRFgsYgxJBc8jcU5Ze0NviTPJj0nfPXYr8ndp493N1-q22-fv95sbysjZJOrdux6y0crS2lkIDq0Q-nc4NBNHC3aHixOljWac9b32BoxaD62LcpuEtfk3cW27PNjxZTV4pLBedYew5oUSDkIyaETBX37D3oIa_RlOQVDw_umkR0Uil8oU05KESd1jG7R8aSAqXM06qDO0ahzNIpxVaIpojeP1uu4oP0r-ZNFAT5cACyvuHcYVTIOy5usi2iyssH9z_837MOiRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942744861</pqid></control><display><type>article</type><title>A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Mukhametkaliyev, T.M. ; Surmeneva, M.A. ; Vladescu, A. ; Cotrut, C.M. ; Braic, M. ; Dinu, M. ; Vranceanu, M.D. ; Pana, I. ; Mueller, M. ; Surmenev, R.A.</creator><creatorcontrib>Mukhametkaliyev, T.M. ; Surmeneva, M.A. ; Vladescu, A. ; Cotrut, C.M. ; Braic, M. ; Dinu, M. ; Vranceanu, M.D. ; Pana, I. ; Mueller, M. ; Surmenev, R.A.</creatorcontrib><description>The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy.
•The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy.•The HA coating significantly reduces the corrosion current density.•The HA coating significantly improves the polarization resistance in vitro.•The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.</description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2017.02.033</identifier><identifier>PMID: 28415551</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alloys ; Alloys - chemistry ; Apatite ; Biocompatibility ; Biodegradability ; Biodegradable material ; Biodegradation ; Biological activity ; Biomedical materials ; Coated Materials, Biocompatible - chemistry ; Corrosion ; Corrosion resistance ; Corrosion resistant alloys ; Durapatite - chemistry ; Electrochemistry ; Electron microscopy ; Fourier transforms ; Hydroxyapatite ; In vitro methods and tests ; Infrared analysis ; Infrared spectroscopy ; Magnesium ; Magnesium - chemistry ; Magnesium alloy ; Magnesium base alloys ; Magnetron sputtering ; Materials science ; Mineralization ; Nanostructure ; Nanostructures - chemistry ; Protective coatings ; Radio frequency ; Scanning electron microscopy ; Surgical implants ; X-ray diffraction</subject><ispartof>Materials Science & Engineering C, 2017-06, Vol.75, p.95-103</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Jun 1, 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-5b67d2bd82bdae0136ed9e012ce96f2eded71defd04a22077e5c39a2b55e86f3</citedby><cites>FETCH-LOGICAL-c384t-5b67d2bd82bdae0136ed9e012ce96f2eded71defd04a22077e5c39a2b55e86f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msec.2017.02.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28415551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukhametkaliyev, T.M.</creatorcontrib><creatorcontrib>Surmeneva, M.A.</creatorcontrib><creatorcontrib>Vladescu, A.</creatorcontrib><creatorcontrib>Cotrut, C.M.</creatorcontrib><creatorcontrib>Braic, M.</creatorcontrib><creatorcontrib>Dinu, M.</creatorcontrib><creatorcontrib>Vranceanu, M.D.</creatorcontrib><creatorcontrib>Pana, I.</creatorcontrib><creatorcontrib>Mueller, M.</creatorcontrib><creatorcontrib>Surmenev, R.A.</creatorcontrib><title>A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance</title><title>Materials Science & Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description>The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy.
•The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy.•The HA coating significantly reduces the corrosion current density.•The HA coating significantly improves the polarization resistance in vitro.•The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.</description><subject>Alloys</subject><subject>Alloys - chemistry</subject><subject>Apatite</subject><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradable material</subject><subject>Biodegradation</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Durapatite - chemistry</subject><subject>Electrochemistry</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Hydroxyapatite</subject><subject>In vitro methods and tests</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Magnesium</subject><subject>Magnesium - chemistry</subject><subject>Magnesium alloy</subject><subject>Magnesium base alloys</subject><subject>Magnetron sputtering</subject><subject>Materials science</subject><subject>Mineralization</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Protective coatings</subject><subject>Radio frequency</subject><subject>Scanning electron microscopy</subject><subject>Surgical implants</subject><subject>X-ray diffraction</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEQhoMo7rj6BzxIwIuXblNJf6TBy7D4BQte9uQlpJPqmQzdyZikdx3wx5thVg8ePBR1qOd9qaqXkNfAamDQvT_US0JTcwZ9zXjNhHhCNiB7UTEY4CnZsIHLqhkEXJEXKR0Y66To-XNyxWUDbdvChvza0tEFi7uorR5npNvvA9BF7zwmty5Uz3M4URN0RksfXN5TTfPeeeq1DynH1eQ1ltH-ZGP4edJHnV1GOoVI3XKM4d75XRFgsYgxJBc8jcU5Ze0NviTPJj0nfPXYr8ndp493N1-q22-fv95sbysjZJOrdux6y0crS2lkIDq0Q-nc4NBNHC3aHixOljWac9b32BoxaD62LcpuEtfk3cW27PNjxZTV4pLBedYew5oUSDkIyaETBX37D3oIa_RlOQVDw_umkR0Uil8oU05KESd1jG7R8aSAqXM06qDO0ahzNIpxVaIpojeP1uu4oP0r-ZNFAT5cACyvuHcYVTIOy5usi2iyssH9z_837MOiRA</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Mukhametkaliyev, T.M.</creator><creator>Surmeneva, M.A.</creator><creator>Vladescu, A.</creator><creator>Cotrut, C.M.</creator><creator>Braic, M.</creator><creator>Dinu, M.</creator><creator>Vranceanu, M.D.</creator><creator>Pana, I.</creator><creator>Mueller, M.</creator><creator>Surmenev, R.A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance</title><author>Mukhametkaliyev, T.M. ; Surmeneva, M.A. ; Vladescu, A. ; Cotrut, C.M. ; Braic, M. ; Dinu, M. ; Vranceanu, M.D. ; Pana, I. ; Mueller, M. ; Surmenev, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-5b67d2bd82bdae0136ed9e012ce96f2eded71defd04a22077e5c39a2b55e86f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Alloys - chemistry</topic><topic>Apatite</topic><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradable material</topic><topic>Biodegradation</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Durapatite - chemistry</topic><topic>Electrochemistry</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Hydroxyapatite</topic><topic>In vitro methods and tests</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Magnesium</topic><topic>Magnesium - chemistry</topic><topic>Magnesium alloy</topic><topic>Magnesium base alloys</topic><topic>Magnetron sputtering</topic><topic>Materials science</topic><topic>Mineralization</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Protective coatings</topic><topic>Radio frequency</topic><topic>Scanning electron microscopy</topic><topic>Surgical implants</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Mukhametkaliyev, T.M.</creatorcontrib><creatorcontrib>Surmeneva, M.A.</creatorcontrib><creatorcontrib>Vladescu, A.</creatorcontrib><creatorcontrib>Cotrut, C.M.</creatorcontrib><creatorcontrib>Braic, M.</creatorcontrib><creatorcontrib>Dinu, M.</creatorcontrib><creatorcontrib>Vranceanu, M.D.</creatorcontrib><creatorcontrib>Pana, I.</creatorcontrib><creatorcontrib>Mueller, M.</creatorcontrib><creatorcontrib>Surmenev, R.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science & Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhametkaliyev, T.M.</au><au>Surmeneva, M.A.</au><au>Vladescu, A.</au><au>Cotrut, C.M.</au><au>Braic, M.</au><au>Dinu, M.</au><au>Vranceanu, M.D.</au><au>Pana, I.</au><au>Mueller, M.</au><au>Surmenev, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance</atitle><jtitle>Materials Science & Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>75</volume><spage>95</spage><epage>103</epage><pages>95-103</pages><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract>The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy.
•The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy.•The HA coating significantly reduces the corrosion current density.•The HA coating significantly improves the polarization resistance in vitro.•The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28415551</pmid><doi>10.1016/j.msec.2017.02.033</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-4931 |
ispartof | Materials Science & Engineering C, 2017-06, Vol.75, p.95-103 |
issn | 0928-4931 1873-0191 |
language | eng |
recordid | cdi_proquest_miscellaneous_1889382163 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Alloys Alloys - chemistry Apatite Biocompatibility Biodegradability Biodegradable material Biodegradation Biological activity Biomedical materials Coated Materials, Biocompatible - chemistry Corrosion Corrosion resistance Corrosion resistant alloys Durapatite - chemistry Electrochemistry Electron microscopy Fourier transforms Hydroxyapatite In vitro methods and tests Infrared analysis Infrared spectroscopy Magnesium Magnesium - chemistry Magnesium alloy Magnesium base alloys Magnetron sputtering Materials science Mineralization Nanostructure Nanostructures - chemistry Protective coatings Radio frequency Scanning electron microscopy Surgical implants X-ray diffraction |
title | A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20biodegradable%20AZ91%20magnesium%20alloy%20coated%20with%20a%20thin%20nanostructured%20hydroxyapatite%20for%20improving%20the%20corrosion%20resistance&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Mukhametkaliyev,%20T.M.&rft.date=2017-06-01&rft.volume=75&rft.spage=95&rft.epage=103&rft.pages=95-103&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2017.02.033&rft_dat=%3Cproquest_cross%3E1889382163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942744861&rft_id=info:pmid/28415551&rft_els_id=S0928493116314734&rfr_iscdi=true |