Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh‐Volumetric‐Performance Supercapacitors

High volumetric energy density combined with high power density is highly desired for electrical double‐layer capacitors. Usually the volumetric performance is improved by compressing carbon material to increase density but at the much expense of power density due to the deviation of the compressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-06, Vol.29 (24), p.n/a
Hauptverfasser: Bu, Yongfeng, Sun, Tao, Cai, Yuejin, Du, Lingyu, Zhuo, Ou, Yang, Lijun, Wu, Qiang, Wang, Xizhang, Hu, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Bu, Yongfeng
Sun, Tao
Cai, Yuejin
Du, Lingyu
Zhuo, Ou
Yang, Lijun
Wu, Qiang
Wang, Xizhang
Hu, Zheng
description High volumetric energy density combined with high power density is highly desired for electrical double‐layer capacitors. Usually the volumetric performance is improved by compressing carbon material to increase density but at the much expense of power density due to the deviation of the compressed porous structure from the ideal one. Herein the authors report an efficient approach to increase the density and optimize the porous structure by collapsing the carbon nanocages via capillarity. Three samples with decreasing sizes of meso‐ and macropores provide us an ideal model system to demonstrate the correlation of volumetric performance with porous structure. The results indicate that reducing the surplus macropores and, more importantly, the surplus mesopores is an efficient strategy to enhance the volumetric energy density while keeping the high power density. The optimized sample achieves a record‐high stack volumetric energy density of 73 Wh L−1 in ionic liquid with superb power density and cycling stability. Collapsed carbon nanocages are obtained by making use of capillarity, featuring high density, large specific surface area, optimized pore distribution, and high conductivity. As supercapacitor electrode materials, such unique characteristics ensure sufficient space and efficient channels for charge storage and transport, leading to top‐level volumetric performances in both aqueous and ionic liquid electrolytes, especially the state‐of‐the‐art stack volumetric energy density with high stability in ionic liquid.
doi_str_mv 10.1002/adma.201700470
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1889381540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920413105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4780-40140335f6aefa9232104988a99843358d584bc20f92483c2fb5164394969b93</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS0EoiGwZYkssWGTcP0zE3sZpfxJhVZqYWt5HE_qamY8XHtUhRVLljwjT4KjlCKxYWX56vPne3QIec5gyQD4a7vt7ZIDWwHIFTwgM1ZxtpCgq4dkBlpUC11LdUKepHQDALqG-jE54UqyVaXrGfmxif2IPqUw7OjGYhMH-skO0dmdT7TZl9kYus5iyHvaRqTnYw59-HbALyLGKdHLjJPLU5HQHG8tbunnLqO9DrvrX99_fond1PuMwZXLhcfi6O3gPL2cRo_OjtaFHDE9JY9a2yX_7O6ck6u3b6427xdn5-8-bNZnCydXCkoyJkGIqq2tb63mgjOQWimrtZJlrraVko3j0GoulXC8bSpWS6GlrnWjxZy8OmpHjF8nn7LpQ3K-JBx8CWOYUlooVpVP5uTlP-hNnHAoyxmmOUgmGFSFWh4phzEl9K0ZMfQW94aBOVRkDhWZ-4rKgxd32qnp_fYe_9NJAfQRuA2d3_9HZ9anH9d_5b8BBqyggA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920413105</pqid></control><display><type>article</type><title>Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh‐Volumetric‐Performance Supercapacitors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bu, Yongfeng ; Sun, Tao ; Cai, Yuejin ; Du, Lingyu ; Zhuo, Ou ; Yang, Lijun ; Wu, Qiang ; Wang, Xizhang ; Hu, Zheng</creator><creatorcontrib>Bu, Yongfeng ; Sun, Tao ; Cai, Yuejin ; Du, Lingyu ; Zhuo, Ou ; Yang, Lijun ; Wu, Qiang ; Wang, Xizhang ; Hu, Zheng</creatorcontrib><description>High volumetric energy density combined with high power density is highly desired for electrical double‐layer capacitors. Usually the volumetric performance is improved by compressing carbon material to increase density but at the much expense of power density due to the deviation of the compressed porous structure from the ideal one. Herein the authors report an efficient approach to increase the density and optimize the porous structure by collapsing the carbon nanocages via capillarity. Three samples with decreasing sizes of meso‐ and macropores provide us an ideal model system to demonstrate the correlation of volumetric performance with porous structure. The results indicate that reducing the surplus macropores and, more importantly, the surplus mesopores is an efficient strategy to enhance the volumetric energy density while keeping the high power density. The optimized sample achieves a record‐high stack volumetric energy density of 73 Wh L−1 in ionic liquid with superb power density and cycling stability. Collapsed carbon nanocages are obtained by making use of capillarity, featuring high density, large specific surface area, optimized pore distribution, and high conductivity. As supercapacitor electrode materials, such unique characteristics ensure sufficient space and efficient channels for charge storage and transport, leading to top‐level volumetric performances in both aqueous and ionic liquid electrolytes, especially the state‐of‐the‐art stack volumetric energy density with high stability in ionic liquid.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201700470</identifier><identifier>PMID: 28417596</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Capillarity ; Carbon ; collapsed carbon nanocages ; compact supercapacitors ; Compressing ; Cycles ; Flux density ; Materials science ; Motors ; Optimization ; optimized porous structure ; Supercapacitors ; ultrahigh‐volumetric energy density</subject><ispartof>Advanced materials (Weinheim), 2017-06, Vol.29 (24), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4780-40140335f6aefa9232104988a99843358d584bc20f92483c2fb5164394969b93</citedby><cites>FETCH-LOGICAL-c4780-40140335f6aefa9232104988a99843358d584bc20f92483c2fb5164394969b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201700470$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201700470$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28417596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bu, Yongfeng</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Cai, Yuejin</creatorcontrib><creatorcontrib>Du, Lingyu</creatorcontrib><creatorcontrib>Zhuo, Ou</creatorcontrib><creatorcontrib>Yang, Lijun</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Wang, Xizhang</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><title>Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh‐Volumetric‐Performance Supercapacitors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>High volumetric energy density combined with high power density is highly desired for electrical double‐layer capacitors. Usually the volumetric performance is improved by compressing carbon material to increase density but at the much expense of power density due to the deviation of the compressed porous structure from the ideal one. Herein the authors report an efficient approach to increase the density and optimize the porous structure by collapsing the carbon nanocages via capillarity. Three samples with decreasing sizes of meso‐ and macropores provide us an ideal model system to demonstrate the correlation of volumetric performance with porous structure. The results indicate that reducing the surplus macropores and, more importantly, the surplus mesopores is an efficient strategy to enhance the volumetric energy density while keeping the high power density. The optimized sample achieves a record‐high stack volumetric energy density of 73 Wh L−1 in ionic liquid with superb power density and cycling stability. Collapsed carbon nanocages are obtained by making use of capillarity, featuring high density, large specific surface area, optimized pore distribution, and high conductivity. As supercapacitor electrode materials, such unique characteristics ensure sufficient space and efficient channels for charge storage and transport, leading to top‐level volumetric performances in both aqueous and ionic liquid electrolytes, especially the state‐of‐the‐art stack volumetric energy density with high stability in ionic liquid.</description><subject>Capillarity</subject><subject>Carbon</subject><subject>collapsed carbon nanocages</subject><subject>compact supercapacitors</subject><subject>Compressing</subject><subject>Cycles</subject><subject>Flux density</subject><subject>Materials science</subject><subject>Motors</subject><subject>Optimization</subject><subject>optimized porous structure</subject><subject>Supercapacitors</subject><subject>ultrahigh‐volumetric energy density</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEUhS0EoiGwZYkssWGTcP0zE3sZpfxJhVZqYWt5HE_qamY8XHtUhRVLljwjT4KjlCKxYWX56vPne3QIec5gyQD4a7vt7ZIDWwHIFTwgM1ZxtpCgq4dkBlpUC11LdUKepHQDALqG-jE54UqyVaXrGfmxif2IPqUw7OjGYhMH-skO0dmdT7TZl9kYus5iyHvaRqTnYw59-HbALyLGKdHLjJPLU5HQHG8tbunnLqO9DrvrX99_fond1PuMwZXLhcfi6O3gPL2cRo_OjtaFHDE9JY9a2yX_7O6ck6u3b6427xdn5-8-bNZnCydXCkoyJkGIqq2tb63mgjOQWimrtZJlrraVko3j0GoulXC8bSpWS6GlrnWjxZy8OmpHjF8nn7LpQ3K-JBx8CWOYUlooVpVP5uTlP-hNnHAoyxmmOUgmGFSFWh4phzEl9K0ZMfQW94aBOVRkDhWZ-4rKgxd32qnp_fYe_9NJAfQRuA2d3_9HZ9anH9d_5b8BBqyggA</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Bu, Yongfeng</creator><creator>Sun, Tao</creator><creator>Cai, Yuejin</creator><creator>Du, Lingyu</creator><creator>Zhuo, Ou</creator><creator>Yang, Lijun</creator><creator>Wu, Qiang</creator><creator>Wang, Xizhang</creator><creator>Hu, Zheng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh‐Volumetric‐Performance Supercapacitors</title><author>Bu, Yongfeng ; Sun, Tao ; Cai, Yuejin ; Du, Lingyu ; Zhuo, Ou ; Yang, Lijun ; Wu, Qiang ; Wang, Xizhang ; Hu, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4780-40140335f6aefa9232104988a99843358d584bc20f92483c2fb5164394969b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capillarity</topic><topic>Carbon</topic><topic>collapsed carbon nanocages</topic><topic>compact supercapacitors</topic><topic>Compressing</topic><topic>Cycles</topic><topic>Flux density</topic><topic>Materials science</topic><topic>Motors</topic><topic>Optimization</topic><topic>optimized porous structure</topic><topic>Supercapacitors</topic><topic>ultrahigh‐volumetric energy density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Yongfeng</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Cai, Yuejin</creatorcontrib><creatorcontrib>Du, Lingyu</creatorcontrib><creatorcontrib>Zhuo, Ou</creatorcontrib><creatorcontrib>Yang, Lijun</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Wang, Xizhang</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Yongfeng</au><au>Sun, Tao</au><au>Cai, Yuejin</au><au>Du, Lingyu</au><au>Zhuo, Ou</au><au>Yang, Lijun</au><au>Wu, Qiang</au><au>Wang, Xizhang</au><au>Hu, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh‐Volumetric‐Performance Supercapacitors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-06</date><risdate>2017</risdate><volume>29</volume><issue>24</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>High volumetric energy density combined with high power density is highly desired for electrical double‐layer capacitors. Usually the volumetric performance is improved by compressing carbon material to increase density but at the much expense of power density due to the deviation of the compressed porous structure from the ideal one. Herein the authors report an efficient approach to increase the density and optimize the porous structure by collapsing the carbon nanocages via capillarity. Three samples with decreasing sizes of meso‐ and macropores provide us an ideal model system to demonstrate the correlation of volumetric performance with porous structure. The results indicate that reducing the surplus macropores and, more importantly, the surplus mesopores is an efficient strategy to enhance the volumetric energy density while keeping the high power density. The optimized sample achieves a record‐high stack volumetric energy density of 73 Wh L−1 in ionic liquid with superb power density and cycling stability. Collapsed carbon nanocages are obtained by making use of capillarity, featuring high density, large specific surface area, optimized pore distribution, and high conductivity. As supercapacitor electrode materials, such unique characteristics ensure sufficient space and efficient channels for charge storage and transport, leading to top‐level volumetric performances in both aqueous and ionic liquid electrolytes, especially the state‐of‐the‐art stack volumetric energy density with high stability in ionic liquid.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28417596</pmid><doi>10.1002/adma.201700470</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-06, Vol.29 (24), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1889381540
source Wiley Online Library Journals Frontfile Complete
subjects Capillarity
Carbon
collapsed carbon nanocages
compact supercapacitors
Compressing
Cycles
Flux density
Materials science
Motors
Optimization
optimized porous structure
Supercapacitors
ultrahigh‐volumetric energy density
title Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh‐Volumetric‐Performance Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compressing%20Carbon%20Nanocages%20by%20Capillarity%20for%20Optimizing%20Porous%20Structures%20toward%20Ultrahigh%E2%80%90Volumetric%E2%80%90Performance%20Supercapacitors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Bu,%20Yongfeng&rft.date=2017-06&rft.volume=29&rft.issue=24&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201700470&rft_dat=%3Cproquest_cross%3E1920413105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920413105&rft_id=info:pmid/28417596&rfr_iscdi=true