SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism

Cancer cells down‐regulate different genes to give them a selective advantage in invasiveness and/or metastasis. The SLC25A26 gene encodes the mitochondrial carrier that catalyzes the import of S‐adenosylmethionine (SAM) into the mitochondrial matrix, required for mitochondrial methylation processes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2017-03, Vol.284 (6), p.967-984
Hauptverfasser: Menga, Alessio, Palmieri, Erika M., Cianciulli, Antonia, Infantino, Vittoria, Mazzone, Massimiliano, Scilimati, Antonio, Palmieri, Ferdinando, Castegna, Alessandra, Iacobazzi, Vito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 984
container_issue 6
container_start_page 967
container_title The FEBS journal
container_volume 284
creator Menga, Alessio
Palmieri, Erika M.
Cianciulli, Antonia
Infantino, Vittoria
Mazzone, Massimiliano
Scilimati, Antonio
Palmieri, Ferdinando
Castegna, Alessandra
Iacobazzi, Vito
description Cancer cells down‐regulate different genes to give them a selective advantage in invasiveness and/or metastasis. The SLC25A26 gene encodes the mitochondrial carrier that catalyzes the import of S‐adenosylmethionine (SAM) into the mitochondrial matrix, required for mitochondrial methylation processes, and is down‐regulated in cervical cancer cells. In this study we show that SLC25A26 is down‐regulated due to gene promoter hypermethylation, as a mechanism to promote cell survival and proliferation. Furthermore, overexpression of SLC25A26 in CaSki cells increases mitochondrial SAM availability and promotes hypermethylation of mitochondrial DNA, leading to decreased expression of key respiratory complex subunits, reduction of mitochondrial ATP and release of cytochrome c. In addition, increased SAM transport into mitochondria leads to impairment of the methionine cycle with accumulation of homocysteine at the expense of glutathione, which is strongly reduced. All these events concur to arrest the cell cycle in the S phase, induce apoptosis and enhance chemosensitivity of SAM carrier‐overexpressing CaSki cells to cisplatin. Overexpression of the SLC25A26 gene, which encodes the mitochondrial S‐adenosylmethionine carrier, in CaSki cells increases mitochondrial S‐adenosylmethionine availability and promotes hypermethylation of mtDNA. This leads to a bioenergetic functional failure of the mitochondria, apoptosis and enhanced chemosensitivity to cisplatin.
doi_str_mv 10.1111/febs.14028
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1888967963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2223659303</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3788-866e6b5b185ce34b8bd8ef7572a48ea80b5a6331d0f073eef098a2f36d0d68493</originalsourceid><addsrcrecordid>eNqFkTtPKzEQhS10Ee-GH4As0dwm4PfOliGXlxRBAUh0ljc7C472hZ0F8u_ZTYCCgutmRj6fzszoEHLI2Qnv32mBWTzhignYIDs8UWKkjIY_37163Ca7Mc4Zk1ql6RbZFsA5aJHukPnddCL0WBjavGLA9zZgjL6pqa9a50OkMyxLWnT1bDH8vnpHq8W_mzF9XrYYKlw8L0u3klyd04BvPvj6iTYFXWtDcVlT-ljtk83ClREPPuseebg4v59cjaa3l9eT8XTUygRgBMagyXTWLzhDqTLIcsAi0YlwCtABy7QzUvKcFSyRiAVLwYlCmpzlBlQq98jftW8bmpcO48JWPg5nuBqbLloOAKlJ0t7k_6jp19AAukePf6Dzpgt1f4gVQkijU8nkb1Q_lnGtIBm8jj6pLqswt23wlQtL-xVLD_A18OZLXH7rnNkhcDsEbleB24vzs7tVJz8Ab6-cYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880154875</pqid></control><display><type>article</type><title>SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Free Full-Text Journals in Chemistry</source><creator>Menga, Alessio ; Palmieri, Erika M. ; Cianciulli, Antonia ; Infantino, Vittoria ; Mazzone, Massimiliano ; Scilimati, Antonio ; Palmieri, Ferdinando ; Castegna, Alessandra ; Iacobazzi, Vito</creator><creatorcontrib>Menga, Alessio ; Palmieri, Erika M. ; Cianciulli, Antonia ; Infantino, Vittoria ; Mazzone, Massimiliano ; Scilimati, Antonio ; Palmieri, Ferdinando ; Castegna, Alessandra ; Iacobazzi, Vito</creatorcontrib><description>Cancer cells down‐regulate different genes to give them a selective advantage in invasiveness and/or metastasis. The SLC25A26 gene encodes the mitochondrial carrier that catalyzes the import of S‐adenosylmethionine (SAM) into the mitochondrial matrix, required for mitochondrial methylation processes, and is down‐regulated in cervical cancer cells. In this study we show that SLC25A26 is down‐regulated due to gene promoter hypermethylation, as a mechanism to promote cell survival and proliferation. Furthermore, overexpression of SLC25A26 in CaSki cells increases mitochondrial SAM availability and promotes hypermethylation of mitochondrial DNA, leading to decreased expression of key respiratory complex subunits, reduction of mitochondrial ATP and release of cytochrome c. In addition, increased SAM transport into mitochondria leads to impairment of the methionine cycle with accumulation of homocysteine at the expense of glutathione, which is strongly reduced. All these events concur to arrest the cell cycle in the S phase, induce apoptosis and enhance chemosensitivity of SAM carrier‐overexpressing CaSki cells to cisplatin. Overexpression of the SLC25A26 gene, which encodes the mitochondrial S‐adenosylmethionine carrier, in CaSki cells increases mitochondrial S‐adenosylmethionine availability and promotes hypermethylation of mtDNA. This leads to a bioenergetic functional failure of the mitochondria, apoptosis and enhanced chemosensitivity to cisplatin.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.14028</identifier><identifier>PMID: 28118529</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Adenosylmethionine ; Amino Acid Transport Systems - biosynthesis ; Amino Acid Transport Systems - genetics ; Apoptosis ; Apoptosis - genetics ; Calcium-Binding Proteins - biosynthesis ; Calcium-Binding Proteins - genetics ; Cancer ; Cell cycle ; Cell Cycle - genetics ; Cell Line, Tumor ; Cell proliferation ; Cell Proliferation - genetics ; Cell survival ; Cervical cancer ; Cervix ; Cisplatin ; Cisplatin - administration &amp; dosage ; Cytochrome ; Cytochrome c ; Cytochromes ; Cytochromes c - biosynthesis ; Cytochromes c - genetics ; Deoxyribonucleic acid ; DNA ; DNA Methylation - genetics ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Drug Resistance, Neoplasm - genetics ; epigenetic mechanisms ; Female ; Gene expression ; Gene Expression Regulation, Neoplastic ; Genes ; Glutathione ; Glutathione - metabolism ; Homocysteine ; Humans ; Invasiveness ; Metabolism ; Metastases ; Methionine ; Methionine - metabolism ; methyl cycle ; Methylation ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - genetics ; Mitochondrial DNA ; mtDNA methylation ; Promoter Regions, Genetic ; Rewiring ; S phase ; S-Adenosylmethionine - metabolism ; SLC25A26 mitochondrial carrier ; S‐adenosylmethionine ; Uterine Cervical Neoplasms - genetics ; Uterine Cervical Neoplasms - metabolism ; Uterine Cervical Neoplasms - pathology</subject><ispartof>The FEBS journal, 2017-03, Vol.284 (6), p.967-984</ispartof><rights>2017 Federation of European Biochemical Societies</rights><rights>2017 Federation of European Biochemical Societies.</rights><rights>Copyright © 2017 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.14028$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.14028$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28118529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menga, Alessio</creatorcontrib><creatorcontrib>Palmieri, Erika M.</creatorcontrib><creatorcontrib>Cianciulli, Antonia</creatorcontrib><creatorcontrib>Infantino, Vittoria</creatorcontrib><creatorcontrib>Mazzone, Massimiliano</creatorcontrib><creatorcontrib>Scilimati, Antonio</creatorcontrib><creatorcontrib>Palmieri, Ferdinando</creatorcontrib><creatorcontrib>Castegna, Alessandra</creatorcontrib><creatorcontrib>Iacobazzi, Vito</creatorcontrib><title>SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Cancer cells down‐regulate different genes to give them a selective advantage in invasiveness and/or metastasis. The SLC25A26 gene encodes the mitochondrial carrier that catalyzes the import of S‐adenosylmethionine (SAM) into the mitochondrial matrix, required for mitochondrial methylation processes, and is down‐regulated in cervical cancer cells. In this study we show that SLC25A26 is down‐regulated due to gene promoter hypermethylation, as a mechanism to promote cell survival and proliferation. Furthermore, overexpression of SLC25A26 in CaSki cells increases mitochondrial SAM availability and promotes hypermethylation of mitochondrial DNA, leading to decreased expression of key respiratory complex subunits, reduction of mitochondrial ATP and release of cytochrome c. In addition, increased SAM transport into mitochondria leads to impairment of the methionine cycle with accumulation of homocysteine at the expense of glutathione, which is strongly reduced. All these events concur to arrest the cell cycle in the S phase, induce apoptosis and enhance chemosensitivity of SAM carrier‐overexpressing CaSki cells to cisplatin. Overexpression of the SLC25A26 gene, which encodes the mitochondrial S‐adenosylmethionine carrier, in CaSki cells increases mitochondrial S‐adenosylmethionine availability and promotes hypermethylation of mtDNA. This leads to a bioenergetic functional failure of the mitochondria, apoptosis and enhanced chemosensitivity to cisplatin.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenosylmethionine</subject><subject>Amino Acid Transport Systems - biosynthesis</subject><subject>Amino Acid Transport Systems - genetics</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>Calcium-Binding Proteins - biosynthesis</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Cell Proliferation - genetics</subject><subject>Cell survival</subject><subject>Cervical cancer</subject><subject>Cervix</subject><subject>Cisplatin</subject><subject>Cisplatin - administration &amp; dosage</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochromes</subject><subject>Cytochromes c - biosynthesis</subject><subject>Cytochromes c - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Methylation - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>epigenetic mechanisms</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes</subject><subject>Glutathione</subject><subject>Glutathione - metabolism</subject><subject>Homocysteine</subject><subject>Humans</subject><subject>Invasiveness</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Methionine</subject><subject>Methionine - metabolism</subject><subject>methyl cycle</subject><subject>Methylation</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - genetics</subject><subject>Mitochondrial DNA</subject><subject>mtDNA methylation</subject><subject>Promoter Regions, Genetic</subject><subject>Rewiring</subject><subject>S phase</subject><subject>S-Adenosylmethionine - metabolism</subject><subject>SLC25A26 mitochondrial carrier</subject><subject>S‐adenosylmethionine</subject><subject>Uterine Cervical Neoplasms - genetics</subject><subject>Uterine Cervical Neoplasms - metabolism</subject><subject>Uterine Cervical Neoplasms - pathology</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtPKzEQhS10Ee-GH4As0dwm4PfOliGXlxRBAUh0ljc7C472hZ0F8u_ZTYCCgutmRj6fzszoEHLI2Qnv32mBWTzhignYIDs8UWKkjIY_37163Ca7Mc4Zk1ql6RbZFsA5aJHukPnddCL0WBjavGLA9zZgjL6pqa9a50OkMyxLWnT1bDH8vnpHq8W_mzF9XrYYKlw8L0u3klyd04BvPvj6iTYFXWtDcVlT-ljtk83ClREPPuseebg4v59cjaa3l9eT8XTUygRgBMagyXTWLzhDqTLIcsAi0YlwCtABy7QzUvKcFSyRiAVLwYlCmpzlBlQq98jftW8bmpcO48JWPg5nuBqbLloOAKlJ0t7k_6jp19AAukePf6Dzpgt1f4gVQkijU8nkb1Q_lnGtIBm8jj6pLqswt23wlQtL-xVLD_A18OZLXH7rnNkhcDsEbleB24vzs7tVJz8Ab6-cYQ</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Menga, Alessio</creator><creator>Palmieri, Erika M.</creator><creator>Cianciulli, Antonia</creator><creator>Infantino, Vittoria</creator><creator>Mazzone, Massimiliano</creator><creator>Scilimati, Antonio</creator><creator>Palmieri, Ferdinando</creator><creator>Castegna, Alessandra</creator><creator>Iacobazzi, Vito</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201703</creationdate><title>SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism</title><author>Menga, Alessio ; Palmieri, Erika M. ; Cianciulli, Antonia ; Infantino, Vittoria ; Mazzone, Massimiliano ; Scilimati, Antonio ; Palmieri, Ferdinando ; Castegna, Alessandra ; Iacobazzi, Vito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3788-866e6b5b185ce34b8bd8ef7572a48ea80b5a6331d0f073eef098a2f36d0d68493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenosylmethionine</topic><topic>Amino Acid Transport Systems - biosynthesis</topic><topic>Amino Acid Transport Systems - genetics</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>Calcium-Binding Proteins - biosynthesis</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Cell Proliferation - genetics</topic><topic>Cell survival</topic><topic>Cervical cancer</topic><topic>Cervix</topic><topic>Cisplatin</topic><topic>Cisplatin - administration &amp; dosage</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochromes</topic><topic>Cytochromes c - biosynthesis</topic><topic>Cytochromes c - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Methylation - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>epigenetic mechanisms</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes</topic><topic>Glutathione</topic><topic>Glutathione - metabolism</topic><topic>Homocysteine</topic><topic>Humans</topic><topic>Invasiveness</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Methionine</topic><topic>Methionine - metabolism</topic><topic>methyl cycle</topic><topic>Methylation</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - genetics</topic><topic>Mitochondrial DNA</topic><topic>mtDNA methylation</topic><topic>Promoter Regions, Genetic</topic><topic>Rewiring</topic><topic>S phase</topic><topic>S-Adenosylmethionine - metabolism</topic><topic>SLC25A26 mitochondrial carrier</topic><topic>S‐adenosylmethionine</topic><topic>Uterine Cervical Neoplasms - genetics</topic><topic>Uterine Cervical Neoplasms - metabolism</topic><topic>Uterine Cervical Neoplasms - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menga, Alessio</creatorcontrib><creatorcontrib>Palmieri, Erika M.</creatorcontrib><creatorcontrib>Cianciulli, Antonia</creatorcontrib><creatorcontrib>Infantino, Vittoria</creatorcontrib><creatorcontrib>Mazzone, Massimiliano</creatorcontrib><creatorcontrib>Scilimati, Antonio</creatorcontrib><creatorcontrib>Palmieri, Ferdinando</creatorcontrib><creatorcontrib>Castegna, Alessandra</creatorcontrib><creatorcontrib>Iacobazzi, Vito</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menga, Alessio</au><au>Palmieri, Erika M.</au><au>Cianciulli, Antonia</au><au>Infantino, Vittoria</au><au>Mazzone, Massimiliano</au><au>Scilimati, Antonio</au><au>Palmieri, Ferdinando</au><au>Castegna, Alessandra</au><au>Iacobazzi, Vito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2017-03</date><risdate>2017</risdate><volume>284</volume><issue>6</issue><spage>967</spage><epage>984</epage><pages>967-984</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Cancer cells down‐regulate different genes to give them a selective advantage in invasiveness and/or metastasis. The SLC25A26 gene encodes the mitochondrial carrier that catalyzes the import of S‐adenosylmethionine (SAM) into the mitochondrial matrix, required for mitochondrial methylation processes, and is down‐regulated in cervical cancer cells. In this study we show that SLC25A26 is down‐regulated due to gene promoter hypermethylation, as a mechanism to promote cell survival and proliferation. Furthermore, overexpression of SLC25A26 in CaSki cells increases mitochondrial SAM availability and promotes hypermethylation of mitochondrial DNA, leading to decreased expression of key respiratory complex subunits, reduction of mitochondrial ATP and release of cytochrome c. In addition, increased SAM transport into mitochondria leads to impairment of the methionine cycle with accumulation of homocysteine at the expense of glutathione, which is strongly reduced. All these events concur to arrest the cell cycle in the S phase, induce apoptosis and enhance chemosensitivity of SAM carrier‐overexpressing CaSki cells to cisplatin. Overexpression of the SLC25A26 gene, which encodes the mitochondrial S‐adenosylmethionine carrier, in CaSki cells increases mitochondrial S‐adenosylmethionine availability and promotes hypermethylation of mtDNA. This leads to a bioenergetic functional failure of the mitochondria, apoptosis and enhanced chemosensitivity to cisplatin.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>28118529</pmid><doi>10.1111/febs.14028</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2017-03, Vol.284 (6), p.967-984
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_1888967963
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphate - metabolism
Adenosylmethionine
Amino Acid Transport Systems - biosynthesis
Amino Acid Transport Systems - genetics
Apoptosis
Apoptosis - genetics
Calcium-Binding Proteins - biosynthesis
Calcium-Binding Proteins - genetics
Cancer
Cell cycle
Cell Cycle - genetics
Cell Line, Tumor
Cell proliferation
Cell Proliferation - genetics
Cell survival
Cervical cancer
Cervix
Cisplatin
Cisplatin - administration & dosage
Cytochrome
Cytochrome c
Cytochromes
Cytochromes c - biosynthesis
Cytochromes c - genetics
Deoxyribonucleic acid
DNA
DNA Methylation - genetics
DNA, Mitochondrial - genetics
DNA, Mitochondrial - metabolism
Drug Resistance, Neoplasm - genetics
epigenetic mechanisms
Female
Gene expression
Gene Expression Regulation, Neoplastic
Genes
Glutathione
Glutathione - metabolism
Homocysteine
Humans
Invasiveness
Metabolism
Metastases
Methionine
Methionine - metabolism
methyl cycle
Methylation
Mitochondria
Mitochondria - drug effects
Mitochondria - genetics
Mitochondrial DNA
mtDNA methylation
Promoter Regions, Genetic
Rewiring
S phase
S-Adenosylmethionine - metabolism
SLC25A26 mitochondrial carrier
S‐adenosylmethionine
Uterine Cervical Neoplasms - genetics
Uterine Cervical Neoplasms - metabolism
Uterine Cervical Neoplasms - pathology
title SLC25A26 overexpression impairs cell function via mtDNA hypermethylation and rewiring of methyl metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SLC25A26%20overexpression%20impairs%20cell%20function%20via%20mtDNA%20hypermethylation%20and%20rewiring%20of%20methyl%20metabolism&rft.jtitle=The%20FEBS%20journal&rft.au=Menga,%20Alessio&rft.date=2017-03&rft.volume=284&rft.issue=6&rft.spage=967&rft.epage=984&rft.pages=967-984&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.14028&rft_dat=%3Cproquest_pubme%3E2223659303%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880154875&rft_id=info:pmid/28118529&rfr_iscdi=true